题目内容

如图所示,水平向右的匀强电场场强为E,有一绝缘轻细杆长为l,一端可绕O点在竖直面内无摩擦转动,另一端粘有一带正电荷的小球,电量为q,质量为m,将小球拉成与O点等高的A点后自由释放,求小球到达最低点B时绝缘杆给小球的力。

解析考点:动能定理的应用;牛顿第二定律;向心力;电势能.
分析:带正电小球由静止从A点释放,当摆到匀强电场最低点B,则在运动过程中电势能变化就等于电场力做功,而由动能定理可求出小球在B点的速度大小,从而运用牛顿第二定律可算出小球到达最低点B时绝缘杆给小球的力.
解: 从A到B,由动能定理得:
MgL+qEL=
在B点牛顿第二定律F-mg=
解得小球到达最低点B时绝缘杆给小球的力:T=3mg+2qE
故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网