题目内容
如图所示,遥控赛车比赛中一个规定项目是“飞跃壕沟”,比赛要求:赛车从起点出发,沿水平直轨道运动,在B点飞出后越过“壕沟”,落在平台EF段.已知赛车的额定功率P=10.0W,赛车的质量m=1.0kg,在水平直轨道上受到的阻力f=2.0N,AB段长L=10.0m,BE的高度差h=1.25m,BE的水平距离x=1.5m.若赛车车长不计,空气阻力不计,g取10m/s2.
(1)若赛车在水平直轨道上能达到最大速度,求最大速度vm的大小;
(2)要越过壕沟,求赛车在B点最小速度v的大小;
(3)若在比赛中赛车通过A点时速度vA=1m/s,且赛车达到额定功率.要使赛车完成比赛,求赛车在AB段通电的最短时间t.

(1)若赛车在水平直轨道上能达到最大速度,求最大速度vm的大小;
(2)要越过壕沟,求赛车在B点最小速度v的大小;
(3)若在比赛中赛车通过A点时速度vA=1m/s,且赛车达到额定功率.要使赛车完成比赛,求赛车在AB段通电的最短时间t.
分析:(1)当赛车在水平轨道上做匀速直线运动时,速度达到最大,由平衡条件求得牵引力,由功率公式P=Fv求解最大速度;
(2)赛车飞越壕沟过程做平抛运动,要越过壕沟,赛车恰好落在E点,根据运动学公式和平抛运动规律求解赛车在B点最小速度v的大小;
(3)赛车恰好能越过壕沟,且赛车通电时间最短,在赛车从A点运动到B点的过程中,根据动能定理求解赛车在AB段通电的最短时间t.
(2)赛车飞越壕沟过程做平抛运动,要越过壕沟,赛车恰好落在E点,根据运动学公式和平抛运动规律求解赛车在B点最小速度v的大小;
(3)赛车恰好能越过壕沟,且赛车通电时间最短,在赛车从A点运动到B点的过程中,根据动能定理求解赛车在AB段通电的最短时间t.
解答:解:(1)赛车在水平轨道上达到最大速度时做匀速直线运动,设其牵引力为F牵,则有
F牵=f
又因为 P额=F牵vm
所以vm=
=5m/s
(2)赛车通过B点在空中做平抛运动,设赛车能越过壕沟的最小速度为v,在空中运动时间为t1,则有
h=
g
且x=vt1
所以v=3m/s
(3)若赛车恰好能越过壕沟,且赛车通电时间最短,在赛车从A点运动到B点的过程中,根据动能定理有
P额t-fL=
mv2-
m
所以t=2.4s
答:(1)赛车在水平直轨道上能达到的最大速度vm的大小是5m/s;
(2)要越过壕沟,赛车在B点最小速度v的大小是3m/s;
(3)若在比赛中赛车通过A点时速度vA=1m/s,且赛车达到额定功率.要使赛车完成比赛,赛车在AB段通电的最短时间t是2.4s.
F牵=f
又因为 P额=F牵vm
所以vm=
| P额 |
| f |
(2)赛车通过B点在空中做平抛运动,设赛车能越过壕沟的最小速度为v,在空中运动时间为t1,则有
h=
| 1 |
| 2 |
| t | 2 1 |
且x=vt1
所以v=3m/s
(3)若赛车恰好能越过壕沟,且赛车通电时间最短,在赛车从A点运动到B点的过程中,根据动能定理有
P额t-fL=
| 1 |
| 2 |
| 1 |
| 2 |
| v | 2 A |
所以t=2.4s
答:(1)赛车在水平直轨道上能达到的最大速度vm的大小是5m/s;
(2)要越过壕沟,赛车在B点最小速度v的大小是3m/s;
(3)若在比赛中赛车通过A点时速度vA=1m/s,且赛车达到额定功率.要使赛车完成比赛,赛车在AB段通电的最短时间t是2.4s.
点评:本题要正确分析赛车在水平轨道上运动的运动情况,抓住牵引力与摩擦力平衡时速度最大是关键点之一.赛车从平台飞出后做平抛运动,如果水平位移大于等于壕沟宽度赛车就可以越过壕沟.
练习册系列答案
相关题目