题目内容
4.分析 小球A下滑过程中,根据机械能守恒定律求出A与B碰撞前的速度.A与B发生弹性碰撞,动量守恒,机械能守恒,根据动量守恒定律及机械能守恒定律列式,
从第一次碰撞到第二次碰撞这个过程中,设两球第一次碰撞到第二次碰撞的时间间隔为t,根据几何关系求出AB两球运动的路程,根据匀速运动位移与速度公式列式,联立方程即可求解.
解答 解:A球下滑过程,由机械能守恒定律:$\frac{1}{2}$mAv02=mAgh
解得小球A与B碰前速度为:v0=4m/s
由A、B两球发生弹性碰撞,由动量守恒定律得:
mAv0=mAvA+mBvB
由机械能守恒定律得:
$\frac{1}{2}$mAv02=$\frac{1}{2}$mAvA2+$\frac{1}{2}$mBvB2
解得:vA=$\frac{{m}_{A}-{m}_{B}}{{m}_{A}+{m}_{B}}{v}_{0}$,vB=$\frac{2{m}_{A}}{{m}_{A}+{m}_{B}}{v}_{0}$
设两球第一次碰撞到第二次碰撞的时间间隔为t,则有:
小球A运动的路程为:xA=3.5-2.5=1m
小球B运动的路程为:xB=3.5+2.5=6m
由运动学公式:xA=vAt
xB=vBt
联立可得:t=1.75s
答:两球第一次碰撞到第二次碰撞的时间间隔为1.75s.
点评 本题主要考查了动量守恒定律以及机械能守恒定律的直接应用,碰撞分为弹性碰撞和非弹性碰撞,还有完全非弹性碰撞,弹性碰撞没有能量损失,非弹性碰撞和完成非弹性碰撞都有能量损失,且后者能量损失最大.
练习册系列答案
相关题目
18.如图所示,质量不同的A、B两颗卫星在同一轨道上做匀速圆周运动.下列说法正确的是( )
| A. | 两颗卫星的动能相等 | B. | 两颗卫星的速度大小不同 | ||
| C. | 两颗卫星所受引力大小相等 | D. | 两颗卫星的加速度大小相等 |
12.
如图所示,船从A处开出后沿直线AB到达对岸,若AB与河岸成37°角,水流速度为2m/s,则船从A处开出的最小速度为(取sin=37°=0.6,cos37°=0.8)( )
| A. | 1.2m/s | B. | 1.6m/s | C. | 2m/s | D. | 2.5m/s |
9.
“竹蜻蜓”是一种在中国民间流传甚广的传统儿童玩具,是中国古代一个很精妙的小发明,距今已有两千多年的历史,其外形如图所示,呈T字形,横的一片是由木片经切削制成的螺旋桨,当中有一个小孔,其中插一根笔直的竹棍,用两手搓转这根竹棍,竹蜻蜓的桨叶便会旋转获得升力飞上天,随着升力减弱而最终又落回地面.二十世纪三十年代,德国人根据“竹蜻蜓”的形状和原理发明了直升机的螺旋桨.下列关于“竹蜻蜓”的说法正确的是( )
| A. | “竹蜻蜓”从手中飞出直至运动到最高点的过程中,始终处于超重状态 | |
| B. | “竹蜻蜓”从手中飞出直至运动到最高点的过程中,始终在减速上升 | |
| C. | “竹蜻蜓”从手中飞出直至运动到最高点的过程中,动能先增加后减小 | |
| D. | “竹蜻蜓”从手中飞出直至运动到最高点的过程中,机械能先增加后减小 |
16.
一质量为M=1.0kg的小物块随足够长的水平传送带一起匀速运动,被一水平向左飞来的子弹击穿(不计子弹穿过物块的时间).如图甲所示,地面观察者记录了物块被击中后的速度随时间变化的关系如图乙所示,已知传送带的速度保持不变,g取10m/s2.则在这一个过程中下列判断正确的是( )
| A. | 传送带速度大小为2m/s,方向向左 | |
| B. | 物块与传送带间的动摩擦因数为0.2 | |
| C. | 传送带对物块做的功为-6 J | |
| D. | 物块与传送带之间由于摩擦而产生的内能为4J |
13.在汽车正常行驶时,以汽车为参考系( )
| A. | 路边的树是静止的 | B. | 路边的树向后运动 | ||
| C. | 汽车里的乘客是运动的 | D. | 前方的汽车一定是运动的 |