ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬³¤Îª2LµÄÇá¸Ë£¬Á½¶Ë¸÷¹Ì¶¨Ò»Ð¡Çò£¬AÇòÖÊÁ¿Îªm1£¬BÇòÖÊÁ¿Îªm2£¬ÇÒm1£¾m2£¬¹ý¸ËµÄÖеãOÓÐһˮƽ¹â»¬¹Ì¶¨Öᣬ¸Ë¿ÉÔÚ²»Í¬µÄ³õʼÌõ¼þÏÂÈÆÖáÔÚÊúÖ±Æ½ÃæÄÚת¶¯£®ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©

| A£®AÇòµ½×î¸ßµãµÄËÙ¶È¿ÉÒÔΪÁã | ||||
| B£®BÇòµ½×îµÍµãµÄËÙ¶ÈÒ»¶¨²»ÎªÁã | ||||
C£®Èô¸Ë¶ÔÖáµÄ×÷ÓÃÁ¦ÎªÁ㣬Ôò´Ëʱ¸ËµÄ½ÇËÙ¶ÈΪ
| ||||
| D£®Í¼Ê¾Î»Öø˶ÔBÇòµÄ×îСÀÁ¦Ò»¶¨²»Îªm2g |
A¡¢¸ËÄ£ÐÍAÇòµ½×î¸ßµãµÄËÙ¶È¿ÉÒÔΪÁ㣮µ±AÇòËÙ¶ÈΪÁãʱ£¬BÇòËÙ¶ÈҲΪÁ㣮¹ÊAÕýÈ·£¬B´íÎó£®
C¡¢ÔÚ×îµÍµãÓУºF2-m2g=m2L¦Ø2£¬½âµÃF2=m2g+m2L¦Ø2£®ÔÚ×î¸ßµã£¬ÓУºF1+m1g=mL¦Ø2£¬½âµÃF1=mL¦Ø2-m1g£®ÔòF1=F2£¬½âµÃ¦Ø=
£®¹ÊCÕýÈ·£®
D¡¢ÔÚͼʾλÖã¬BÇòµÄ×îСËÙ¶ÈΪÁ㣬Ôò×îСÀÁ¦Îªm2g£®¹ÊD´íÎó£®
¹ÊÑ¡AC£®
C¡¢ÔÚ×îµÍµãÓУºF2-m2g=m2L¦Ø2£¬½âµÃF2=m2g+m2L¦Ø2£®ÔÚ×î¸ßµã£¬ÓУºF1+m1g=mL¦Ø2£¬½âµÃF1=mL¦Ø2-m1g£®ÔòF1=F2£¬½âµÃ¦Ø=
|
D¡¢ÔÚͼʾλÖã¬BÇòµÄ×îСËÙ¶ÈΪÁ㣬Ôò×îСÀÁ¦Îªm2g£®¹ÊD´íÎó£®
¹ÊÑ¡AC£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿