ÌâÄ¿ÄÚÈÝ
13£®¢Ù¸ù¾ÝÒÔÉÏÖ±½Ó²âÁ¿µÄÎïÀíÁ¿µÃСÇò³õËÙ¶ÈΪ¦Ô0=x$\sqrt{\frac{g}{{y}_{2}-{y}_{1}}}$£¨ÓÃÌâÖÐËù¸ø×Öĸ±íʾ£©
¢ÚСÇò³õËٶȵIJâÁ¿ÖµÎª1.0m/s£®£¨±£ÁôÁ½Î»ÓÐЧÊý×Ö£©
·ÖÎö СÇòÀ뿪µ¼¹ìºó×öƽÅ×Ô˶¯£¬½«Æ½Å×Ô˶¯·Ö½âΪˮƽ·½ÏòµÄÔÈËÙÖ±ÏßÔ˶¯ºÍÊúÖ±·½ÏòµÄ×ÔÓÉÂäÌåÔ˶¯£®¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ¡÷x=aT2£¬ÓÉy1¡¢y2Çó³öAµ½B»òBµ½CµÄʱ¼ä£¬ÔÙÇó³ö³õËÙ¶È£®
½â´ð ½â£º£¨1£©ÊúÖ±·½Ïò£ºÐ¡Çò×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÍÆÂÛ¡÷x=aT2µÃ
y2-y1=gT2£¬µÃ£ºT=$\sqrt{\frac{{y}_{2}-{y}_{1}}{g}}$
ˮƽ·½Ïò£ºÐ¡Çò×öÔÈËÙÖ±ÏßÔ˶¯x=v0T£¬ÔòÓÐ
v0=$\frac{x}{T}$=x$\sqrt{\frac{g}{{y}_{2}-{y}_{1}}}$
£¨2£©x=10.00cm=0.1m£¬A¡¢B¼ä¾àÀëy1=4.78cm£¬B¡¢C¼ä¾àÀëy2=14.58cm£»
½«Êý¾Ý´úÈ빫ʽ£ºv0=x$\sqrt{\frac{g}{{y}_{2}-{y}_{1}}}$=0.1¡Á$\sqrt{\frac{9.8}{0.1458-0.0478}}$m/s=1.0m/s£®
½âµÃv0=1.0m/s£®
¹Ê´ð°¸Îª£ºx$\sqrt{\frac{g}{{y}_{2}-{y}_{1}}}$£¬1.0£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÔȱäËÙÖ±ÏßÔ˶¯Öлù±¾¹æÂÉÒÔ¼°ÍÆÂÛµÄÓ¦Óã¬Æ½Ê±Òª¼ÓÇ¿Á·Ï°£¬Ìá¸ßÓ¦Óûù±¾¹æÂɽâ¾öÎÊÌâÄÜÁ¦£®
| A£® | ˮƽÁ¦FÎÞÂÛ¶à´ó¶¼²»ÄÜʹϸÏß´¦ÓÚˮƽλÖà | |
| B£® | ֻҪˮƽÁ¦FʼÖÕ´óÓÚG£¬Ï¸Ï߾ͿÉÒԴﵽˮƽλÖà | |
| C£® | ֻҪˮƽÁ¦FÖð½¥Ôö´ó£¬Ï¸Ï߾ͿÉÒԴﵽˮƽλÖà | |
| D£® | Á¦FÓÐʱ¿ÉÄÜСÓÚG£¬µ«ÔÚÊʵ±µÄʱºò´óÓÚG£¬Ï¸Ïß¿ÉÒԴﵽˮƽλÖà |
| A£® | 0.56 m | B£® | 0.65 m | C£® | 1.00 m | D£® | 2.25 m |