题目内容
如图所示,平行金属导轨间距为0.5m,水平放置,电源电动势为E=1.5V,内阻r=0.2Ω,金属棒电阻R=2.8Ω,与平行导轨垂直,其余电阻不计,金属棒处于磁感应强度B=2.0T、方向与水平方向成60角的匀强磁场中,则开始接通电路瞬间,问:(1)金属棒受到的安培力的大小和方向如何?
(2)若棒的质量为m=5×10-2kg,此时它对轨道的压力是多少?
【答案】分析:(1)如图,导体棒与磁场垂直,由F=BIL求解安培力的大小,其中I由闭合电路欧姆定律求出.安培力的方向由左手定则判断;
(2)分析导体棒的情况,由平衡条件求出轨道对导体棒的支持力,再由牛顿第三定律求解它对轨道的压力.
解答:解:(1)由闭合电路欧姆定律得
电路中的电流为 I=
=
A=0.5A
安培力的大小为 F=BIL=2.0×0.5×0.5=0.5N
由左手定则可知,与水平成30°斜向左上方
(2)对导体棒,由平衡条件得:FN+Fsin30°=mg
解得:FN=0.25N
由牛顿第三定律可知,对轨道的压力为0.25N.
答:(1)金属棒受到的安培力的大小是0.5N,方向与水平成30°斜向左上方.
(2)若棒的质量为m=5×10-2kg,此时它对轨道的压力是0.25N.
点评:本题是通电导体棒在磁场中平衡问题,安培力分析和计算是解题的关键.
(2)分析导体棒的情况,由平衡条件求出轨道对导体棒的支持力,再由牛顿第三定律求解它对轨道的压力.
解答:解:(1)由闭合电路欧姆定律得
电路中的电流为 I=
安培力的大小为 F=BIL=2.0×0.5×0.5=0.5N
由左手定则可知,与水平成30°斜向左上方
(2)对导体棒,由平衡条件得:FN+Fsin30°=mg
解得:FN=0.25N
由牛顿第三定律可知,对轨道的压力为0.25N.
答:(1)金属棒受到的安培力的大小是0.5N,方向与水平成30°斜向左上方.
(2)若棒的质量为m=5×10-2kg,此时它对轨道的压力是0.25N.
点评:本题是通电导体棒在磁场中平衡问题,安培力分析和计算是解题的关键.
练习册系列答案
相关题目