题目内容
质量为m1、m2的两个星球组成双星,它们在相互之间的万有引力作用下绕两球连线上某点O做匀速圆周运动,则它们各自运动的周期T1:T2=______,半径r1:r2=______,线速度v1:v2=______,向心加速度a1:a2=______.
双星靠相互间的万有引力提供向心力,周期相等,角速度相等.所以周期比T1:T2=1:1.
根据G
=m1r1(
)2,G
=m2r2(
)2,知m1r1=m2r2,则半径r1:r2=m2:m1.
根据v=rω得,
v1:v2=r1:r2=m2:m1.
根据a=rω2得,a1:a2=r1:r2=m2:m1.
故本题答案为:1:1,m2:m1,m2:m1,m2:m1.
根据G
| m1m2 |
| L2 |
| 2π |
| T |
| m1m2 |
| L2 |
| 2π |
| T |
根据v=rω得,
v1:v2=r1:r2=m2:m1.
根据a=rω2得,a1:a2=r1:r2=m2:m1.
故本题答案为:1:1,m2:m1,m2:m1,m2:m1.
练习册系列答案
相关题目