ÌâÄ¿ÄÚÈÝ
| E | 2 |
£¨1£©Á£×ÓÔÚ¢òÇøÓòÔÈÇ¿´Å³¡ÖÐÔ˶¯µÄ¹ìµÀ°ë¾¶
£¨2£©O¡¢M¼äµÄ¾àÀë
£¨3£©Á£×Ó´ÓMµã³ö·¢µ½µÚ¶þ´Îͨ¹ýCD±ß½çËù¾ÀúµÄʱ¼ä£®
·ÖÎö£º£¨1£©´øµçÁ£×ÓÔÚÔÈÇ¿µç³¡¢ñÖÐ×öÀàÆ½Å×Ô˶¯£¬Ë®Æ½·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬ÊúÖ±·½Ïò×ö³õËÙ¶ÈΪÁãµÄÔȼÓËÙÔ˶¯£¬ÓÉÌâÒ⣬Á£×Ó¾¹ýAµãµÄËÙ¶È·½ÏòÓëOP³É60¡ã½Ç£¬¼´¿ÉÇó³ö´ËʱÁ£×ÓµÄËÙ¶È£®Á£×ÓÔÚÔÈÇ¿´Å³¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɼ´¿ÉÇó³ö¹ìµÀ°ë¾¶£®
£¨2£©Á£×ÓÔÚÔÈÇ¿µç³¡ÖÐÔ˶¯Ê±£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇóµÃ¼ÓËÙ¶È£¬ÔÚAµã£¬ÊúÖ±·½ÏòµÄËÙ¶È´óСΪvy=v0tan60¡ã£¬ÓÉËٶȹ«Ê½Çó½âʱ¼ä£¬ÓÉÎ»ÒÆÇóµÃO¡¢M¼äµÄ¾àÀ룮
£¨3£©»³öÁ£×ÓÔÚ¢òÇøÓò´Å³¡ÖеÄÔ˶¯¹ì¼££¬Óɼ¸ºÎ֪ʶÇó³ö¹ì¼£¶ÔÓ¦µÄÔ²ÐĽǦȣ¬¸ù¾Ýt=
T£¬Çó³öÔڴų¡ÖÐÔ˶¯µÄʱ¼ä£®Á£×Ó½øÈë¢óÇøÓòµÄÔÈÇ¿µç³¡Öкó£¬ÏÈÏòÓÒ×öÔȼõËÙÔ˶¯£¬ºóÏò×ó×öÔȼÓËÙÔ˶¯£¬µÚ¶þ´Îͨ¹ýCD±ß½ç£®ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½½áºÏ¿ÉÇóµÃÁ£×ÓÔÚ¢óÇøÓòµç³¡ÖÐÔËÐÐʱ¼ä£¬¼´¿ÉÇó½âÁ£×Ó´ÓMµã³ö·¢µ½µÚ¶þ´Îͨ¹ýCD±ß½çËùÓÃʱ¼ä£®
£¨2£©Á£×ÓÔÚÔÈÇ¿µç³¡ÖÐÔ˶¯Ê±£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇóµÃ¼ÓËÙ¶È£¬ÔÚAµã£¬ÊúÖ±·½ÏòµÄËÙ¶È´óСΪvy=v0tan60¡ã£¬ÓÉËٶȹ«Ê½Çó½âʱ¼ä£¬ÓÉÎ»ÒÆÇóµÃO¡¢M¼äµÄ¾àÀ룮
£¨3£©»³öÁ£×ÓÔÚ¢òÇøÓò´Å³¡ÖеÄÔ˶¯¹ì¼££¬Óɼ¸ºÎ֪ʶÇó³ö¹ì¼£¶ÔÓ¦µÄÔ²ÐĽǦȣ¬¸ù¾Ýt=
| ¦È |
| 2¦Ð |
½â´ð£º½â£º£¨1£©Á£×ÓÔÚÔÈÇ¿µç³¡ÖÐ×öÀàÆ½Å×Ô˶¯£¬Ë®Æ½·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬ÉèÁ£×Ó¹ýAµãʱËÙ¶ÈΪv£¬
ÓÉÀàÆ½Å×Ô˶¯µÄ¹æÂÉÖª v=
Á£×ÓÔÚÔÈÇ¿´Å³¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
Bqv=m
ËùÒÔ R=
£¨2£©ÉèÁ£×ÓÔڵ糡ÖÐÔ˶¯Ê±¼äΪt1£¬¼ÓËÙ¶ÈΪa£®

ÔòÓÐqE=ma
v0tan60¡ã=at1
¼´t1=
O¡¢MÁ½µã¼äµÄ¾àÀëΪ L=
a
=
£¨3£©ÉèÁ£×ÓÔÚ¢òÇøÓò´Å³¡ÖÐÔ˶¯Ê±¼äΪt2£®
ÔòÓɼ¸ºÎ¹ØÏµÖª¹ìµÀµÄÔ²ÐĽǡÏAO1D=60¡ã£¬Ôò
t2=
=
ÉèÁ£×ÓÔÚ¢óÇøÓòµç³¡ÖÐÔËÐÐʱ¼äΪt3£¬ÔòÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
a¡ä=
=
Ôò t3=2
=
¹ÊÁ£×Ó´ÓMµã³ö·¢µ½µÚ¶þ´Îͨ¹ýCD±ß½çËùÓÃʱ¼äΪ
t=t1+t2+t3=
+
+
=
+
´ð£º
£¨1£©Á£×ÓÔÚ¢òÇøÓòÔÈÇ¿´Å³¡ÖÐÔ˶¯µÄ¹ìµÀ°ë¾¶ÊÇ
£®
£¨2£©O¡¢M¼äµÄ¾àÀëÊÇ
£®
£¨3£©Á£×Ó´ÓMµã³ö·¢µ½µÚ¶þ´Îͨ¹ýCD±ß½çËù¾ÀúµÄʱ¼äÊÇ
+
£®
ÓÉÀàÆ½Å×Ô˶¯µÄ¹æÂÉÖª v=
| ||
| cos60¡ã |
Á£×ÓÔÚÔÈÇ¿´Å³¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
Bqv=m
| v2 |
| R |
ËùÒÔ R=
| 2mv0 |
| qB |
£¨2£©ÉèÁ£×ÓÔڵ糡ÖÐÔ˶¯Ê±¼äΪt1£¬¼ÓËÙ¶ÈΪa£®
ÔòÓÐqE=ma
v0tan60¡ã=at1
¼´t1=
| ||
| qE |
O¡¢MÁ½µã¼äµÄ¾àÀëΪ L=
| 1 |
| 2 |
| t | 2 1 |
3m
| ||
| 2qE |
£¨3£©ÉèÁ£×ÓÔÚ¢òÇøÓò´Å³¡ÖÐÔ˶¯Ê±¼äΪt2£®
ÔòÓɼ¸ºÎ¹ØÏµÖª¹ìµÀµÄÔ²ÐĽǡÏAO1D=60¡ã£¬Ôò
t2=
| T1 |
| 6 |
| ¦Ðm |
| 3qB |
ÉèÁ£×ÓÔÚ¢óÇøÓòµç³¡ÖÐÔËÐÐʱ¼äΪt3£¬ÔòÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
a¡ä=
q
| ||
| m |
| qE |
| 2m |
Ôò t3=2
| 2v0 |
| a¡ä |
| 8mv0 |
| qE |
¹ÊÁ£×Ó´ÓMµã³ö·¢µ½µÚ¶þ´Îͨ¹ýCD±ß½çËùÓÃʱ¼äΪ
t=t1+t2+t3=
| ||
| qE |
| ¦Ðm |
| 3qB |
| 8mv0 |
| qE |
(8+
| ||
| qE |
| ¦Ðm |
| 3qB |
´ð£º
£¨1£©Á£×ÓÔÚ¢òÇøÓòÔÈÇ¿´Å³¡ÖÐÔ˶¯µÄ¹ìµÀ°ë¾¶ÊÇ
| 2mv0 |
| qB |
£¨2£©O¡¢M¼äµÄ¾àÀëÊÇ
3m
| ||
| 2qE |
£¨3£©Á£×Ó´ÓMµã³ö·¢µ½µÚ¶þ´Îͨ¹ýCD±ß½çËù¾ÀúµÄʱ¼äÊÇ
(8+
| ||
| qE |
| ¦Ðm |
| 3qB |
µãÆÀ£º±¾ÌâÖдøµçÁ£×ÓÔÚ¸´ºÏ³¡ÖÐÔ˶¯£¬ÔËÓÃÔ˶¯µÄ·Ö½â·¨Ñо¿ÀàÆ½Å×Ô˶¯£¬»¹ì¼£ÊÇ´¦ÀíÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯µÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿