题目内容

如图所示,倾角为θ的光滑斜面ABC放在水平面上,劲度系数分别为k1、k2的两个轻弹簧沿斜面悬挂着,两弹簧之间有一质量为m1的重物,最下端挂一质量为m2的重物,此时两重物处于平衡状态,现把斜面ABC绕A点在同一平面内缓慢地顺时针旋转90°后,重新达到平衡.试求m1、m2分别沿斜面移动的距离。

 

 

【答案】

【解析】

试题分析:没旋转时,两弹簧均处于伸长状态,两弹簧伸长量分别为x1、x2,则有:

k2x2=m2gsinθ   (2分)  

解得:    (1分)

k2x2+m1gsinθ=k1x1      (3分)         

解得:    (1分)

旋转后,两弹簧均处于压缩状态,压缩量分别为x1′、x2′,则有:

m2gcosθ=k2x2′            (2分)        

解得: (1分)

(m1+m2)gcosθ=k1x1′    (3分)

解得:    (1分)

所以m1移动的距离:    (2分)

m2移动的距离:   (2分)

考点:本题考查力的平衡、胡克定律等知识。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网