ÌâÄ¿ÄÚÈÝ
| 1 | 2 |
·ÖÎö£ºÐ¡ÇòÔ˶¯¹ý³ÌÖУ¬Ö»ÓÐÖØÁ¦ºÍµ¯»Éµ¯Á¦×ö¹¦£¬Ð¡ÇòºÍÏðƤÉþ×é³ÉµÄϵͳ»úеÄÜÊØºã£¬¸ù¾ÝϵͳÔö¼ÓµÄµ¯ÐÔÊÆÄܵÈÓÚСÇò¼õСµÄÖØÁ¦ÊÆÄÜÁÐʽ£¬¼´¿ÉÇó½â£®
½â´ð£º½â£ºÐ¡ÇòÔ˶¯¹ý³ÌÖУ¬Ö»ÓÐÖØÁ¦ºÍµ¯»Éµ¯Á¦×ö¹¦£¬Ð¡ÇòºÍÏðƤÉþ×é³ÉµÄϵͳ»úеÄÜÊØºã£¬Ð¡ÇòÏÂÂäµ½×îµÍµãʱËÙ¶ÈΪÁ㣬Ôò¡÷Ek=0£¬
Ôö¼ÓµÄµ¯ÐÔÊÆÄÜΪ£º¡÷E¦Ñ=
k(L-x0)2£¬
¼õÉÙµÄÖØÁ¦ÊÆÄÜΪ£º¡÷Ep¡ä=mgL£¬
ÔòÓУº¡÷Ep=¡÷Ep¡ä£¬
½âµÃ£ºx0=L-
´ð£ºÏðƤÉþµÄ×ÔÈ»³¤¶ÈΪL-
£®
Ôö¼ÓµÄµ¯ÐÔÊÆÄÜΪ£º¡÷E¦Ñ=
| 1 |
| 2 |
¼õÉÙµÄÖØÁ¦ÊÆÄÜΪ£º¡÷Ep¡ä=mgL£¬
ÔòÓУº¡÷Ep=¡÷Ep¡ä£¬
½âµÃ£ºx0=L-
|
´ð£ºÏðƤÉþµÄ×ÔÈ»³¤¶ÈΪL-
|
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁË»úеÄÜÊØºã¶¨ÂɵÄÖ±½ÓÓ¦Óã¬×¢ÒâÊÇСÇòºÍÏðƤÉþ×é³ÉµÄϵͳ»úеÄÜÊØºã£¬ÄѶÈÊÊÖУ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿