题目内容
如图所示,真空中有以O′为圆心,r为半径的圆形匀强磁场区域,磁场方向垂直纸面向外,磁感应强度为B。圆的最下端与x轴相切于直角坐标原点O,圆的右端与平行于y轴的虚线MN相切,在虚线MN右侧x轴上方足够大的范围内有方向竖直向下、场强大小为E的匀强电场,在坐标系第四象限存在方向垂直纸面向里、磁感应强度大小也为B的匀强磁场,现从坐标原点O沿y轴正方向发射速率相同的质子,质子在磁场中做半径为r的匀速圆周运动,然后进入电场到达x轴上的C点。已知质子带电量为+q,质量为m,不计质子的重力、质子对电磁场的影响及质子间的相互作用力。求:

(1)质子刚进入电场时的速度方向和大小;
(2)OC间的距离;
(3)若质子到达C点后经过第四限的磁场后恰好被放在x轴上D点处(图上未画出)的一检测装置俘获,此后质子将不能再返回电场,则CD间的距离为多少。
(1)质子刚进入电场时的速度方向和大小;
(2)OC间的距离;
(3)若质子到达C点后经过第四限的磁场后恰好被放在x轴上D点处(图上未画出)的一检测装置俘获,此后质子将不能再返回电场,则CD间的距离为多少。
(1)
方向沿x轴正方向 (2)r+
(3)
试题分析:(1)质子在磁场中做匀速圆周运动,洛伦兹力提供向心力,
根据牛顿第二定律得qvB=
解得
质子运动轨迹如下图,
因为圆形匀强磁场区域的半径为r,质子在磁场中做匀速圆周运动的半径也为r,所以四边形
(2)质子沿y轴正方向射入磁场,则以N为圆心转过
由牛顿第二定律得 qE=ma
解得
在x方向上,由题意可知x1=ON=r
电场中x2=NC=v
所以OC间的距离为x=x1+ x2 =r+
(3)设质子出电场时在竖直方向的速度为
质子合速度与x轴正向夹角
质子到达C点后进入第四限的磁场的运动轨迹如下图所示,设质子在第四限磁场中运动的轨道半径为R.
根据圆的性质,由几何知识得:
x3="CD=" 2R sinθ
质子在磁场中做匀速圆周运动,洛伦兹力提供向心力,根据牛顿第二定律得qvB=
运动半径
以上各式联立解得:x3="CD=" 2
练习册系列答案
相关题目