题目内容
图示abcd为正方形区域,e为bc的中点.一带电粒子从a点以初速v0平行于ad射入,加一个方向与ab平行,场强为E的匀强电场,它恰能从e点射出;若不加电场,改加一个方向与纸面垂直,磁感应强度为B的匀强磁场,它也恰好从e点射出.
(1)求E与B的比.
(2)求两种情况下粒子的偏转角度.
答案:
解析:
解析:
|
(1) (2)加电场时,偏转角度为θ1=arctan 加磁场时,偏转角度为θ2,由几何关系 解:设正方形的边长为l.加电场时,作类平抛运动,有 加磁场时,作匀速圆周运动,轨迹如图所示,圆心为O,半径为R.根据几何关系,有(l-R)2+(l/2)2=R2,解得R=5l/8.又R=mv0/qB.由以上各式可解出 (2)加电场时的偏转角度为θ1,则tanθ1=
|
练习册系列答案
相关题目
如图所示是等腰直角三棱柱,其中底面abcd为正方形,边长为L,它们按图示位置放置于竖直向下的匀强磁场中,磁感应强度为B,下面说法中正确的是( )![]()
| A.通过abcd平面的磁通量大小为L2·B |
| B.通过dcfe平面的磁通量大小为 |
| C.通过abfe平面的磁通量大小为零 |
| D.通过bcf平面的磁通量为零 |