题目内容
地球赤道上的物体随地球自转而做圆周运动的向心力为F1,向心加速度为a1,线速度为v1,角速度为ω1;地球同步卫星的向心力为F2,向心加速度为a2,线速度为v2,角速度为ω2;设物体与卫星的质量相等,则( )A.F1>F2
B.a1>a2
C.v1<v2
D.ω1=ω2
【答案】分析:题中涉及两个物体:地球赤道上有一随地球的自转而做圆周运动物体1、地球同步卫星2;
物体1与人造卫星2转动周期相同,进行比较分析即可.
解答:解:A、物体1和卫星2周期相等,则角速度相等,即ω1=ω2,
而加速度a=rω2,则a2>a1,
物体与卫星的质量相等,根据F=ma得 F2>F1.故AB错误
C、物体1和卫星2周期相等,则角速度相等,即ω1=ω2,根据v=rω,则v2>v1,故C正确,D正确
故选CD.
点评:本题关键要将物体1、同步卫星2进行分析比较,把物体当同一种模型分析,否则会使问题复杂化.
物体1与人造卫星2转动周期相同,进行比较分析即可.
解答:解:A、物体1和卫星2周期相等,则角速度相等,即ω1=ω2,
而加速度a=rω2,则a2>a1,
物体与卫星的质量相等,根据F=ma得 F2>F1.故AB错误
C、物体1和卫星2周期相等,则角速度相等,即ω1=ω2,根据v=rω,则v2>v1,故C正确,D正确
故选CD.
点评:本题关键要将物体1、同步卫星2进行分析比较,把物体当同一种模型分析,否则会使问题复杂化.
练习册系列答案
相关题目
设同步卫星离地心的距离为r,运行速率为v1,加速度为a1;地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球的半径为R,则下列比值正确的是( )
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|