题目内容
[探究]一根长为L的均匀细杆可以绕通过其一端的水平轴O在竖直平面内转动,杆最初处于水平位置,杆上距O为a处放有小物体(可视为质点),杆与其上小物体最初均处于静止状态,如图所示,若此杆突然以角速度ω绕O轴转动,问当ω取什么值时,小物体与杆可能相碰?
解析:
|
[案例]物体相遇的条件是在相同的时间内物体的路程或位移相等.本题中是物体自由下落的位移与由于杆的转动而引起的相同时间内的杆的两位置与B所在竖直线交点间的距离相等,从图(a)中看出,此最大距离为BD长,即atanθ1.物体做自由落体运动,起始速度较小,速度逐渐变大.而杆在匀速转动,在相同时间内,BC大于自由落体高度,当两者相等时则相遇,相遇的最大距离为BD,即为ω的最大值.若ω再增大时,当物体落至D点时,杆已转过OD位置.则此时不可能相碰,但当ω再增大时,即在物体没有到达D之前杆可能再次转入∠AOD区域.这种情况物体与杆也能相碰,这种情况相遇的最长时间是在D点相遇,此时的ω为这种情况的最小值,只要ω大于该值均能在∠AOD区域内相碰,如图(b). |
- QQ空间
- 新浪微博
- 百度搜藏
- 人人网
- 腾讯微博
- 开心网
- 腾讯朋友
- 百度空间
- 豆瓣网
- 搜狐微博
- MSN
- QQ收藏
- 我的淘宝
- 百度贴吧
- 搜狐白社会
- 更多...
百度分享
一个有一定厚度的圆盘,可以绕通过中心垂直于盘面的水平轴转动,用下面的方法测量它匀速转动时的角速度。
实验器材:电磁打点计时器、米尺、纸带、复写纸片。
实验步骤:
(1)如图1所示,将电磁打点计时器固定在桌面上,将纸带的一端穿过打点计时器的限位孔后,固定在待测圆盘的侧面上,使得圆盘转动时,纸带可以卷在圆盘侧面上。
(2)启动控制装置使圆盘转动,同时接通电源,打点计时器开始打点。
(3)经过一段时间,停止转动和打点,取下纸带,进行测量。
① 由已知量和测得量表示的角速度的表达式为ω= 。式中各量的意义是:
.
② 某次实验测得圆盘半径r=5.50×10-2m,得到纸带的一段如图2所示,求得角速度为 。
(1) (2)6.8/s。 |