题目内容
在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y=2.5cosA.(
B.(
C.(
D.(
【答案】分析:环在运动的过程中,机械能守恒,根据曲线方程可以确定环的位置,即环的高度的大小.从而得出最高点的坐标.
解答:光滑小环在沿金属杆运动的过程中,只有重力做功,机械能守恒,
由曲线方程知,环在x=0处的y坐标是-1.25m,
根据机械能守恒定律,有:
解得y=0,即kx+
=
,该小环在x轴方向最远能运动到x=
m处.故A正确,B、C、D错误.
故选A.
点评:本题和数学的上的方程结合起来,根据方程来确定物体的位置,从而利用机械能守恒来解题,题目新颖,是个好题.
解答:光滑小环在沿金属杆运动的过程中,只有重力做功,机械能守恒,
由曲线方程知,环在x=0处的y坐标是-1.25m,
根据机械能守恒定律,有:
解得y=0,即kx+
故选A.
点评:本题和数学的上的方程结合起来,根据方程来确定物体的位置,从而利用机械能守恒来解题,题目新颖,是个好题.
练习册系列答案
相关题目