题目内容
如图所示,一上表面粗糙的斜面体放在光滑的水平地面上,斜面的倾角为θ。若斜面固定,另一质量为m的滑块恰好能沿斜面匀速下滑。若斜面不固定,而用一推力F作用在滑块上,可使滑块沿斜面匀速上滑,若同时要求斜面体静止不动,就必须施加一个大小为P= 4mgsinθcosθ的水平推力作用于斜面体。求满足题意的这个F的大小和方向。![]()
解:滑块恰好能沿斜面匀速下滑,![]()
滑块与斜面间的摩擦因数:μ= tanθ
若用一推力F作用在滑块上,使之能沿斜面匀速上滑,对滑块,如图18-甲所示受力分析,并建立直角坐标系(将F沿斜面、垂直斜面分解成Fx和Fy)![]()
X轴方向,根据平衡条件:Fx=f+mgsinθ-----------①(1分)
Y轴方向,根据平衡条件:Fy+mgcosθ=N-----------②(1分)
且 f = μN = Ntanθ-----------------------------------③(1分)
①②③联立可得:Fx =Fytanθ+ 2mgsinθ---------④(1分)
对斜面体如图18-乙所示受力分析,并建立直角坐标系,
X`轴方向,根据平衡条件:
P = fcosθ+ Nsinθ---------------------------------⑤(1分)
即:4mgsinθcosθ=μNcosθ+ Nsinθ
代入μ值,化简得:Fy =mgcosθ-------------------⑥(2分)
入可④得:Fx = 3mgsinθ---------------------------⑦(2分)
最后由F =![]()
解得:F = mg
-------------⑧(1分)
由tanα=
解α= arctg(
)--------------⑨(2分)
(设α为F和斜面的夹角)。
(说明:本题有多种求解方法,根据具体方法恰当制定评分标准)![]()
解析