题目内容
【题目】如图所示,甲、乙是两条不同材料的弹性细绳,两绳在
处连接。
分别是甲乙两绳上的两点
距为
,
间距为
。
点上下振动时形成向左、向右传播的简谐横波。
时刻
点处在波谷位置。
后波谷恰好传播到
点,此时
间还有一个波谷,且
点在平衡位置且向上运动。已知乙波的波速为
。则下列说法正确的是( )
![]()
A.甲波的波长为![]()
B.甲波的波速为![]()
C.
点的振动周期为![]()
D.
时,
点恰好处于波谷
E.当
点处于波峰时,
点也一定处于波峰
【答案】BCE
【解析】
A.由
后的波形特点知
![]()
则
![]()
故A错误;
BC.甲波的波速
![]()
则甲波的周期
。
波的频率等于波源的振动频率,则甲、乙两波频率相等,则其周期相等,则有
![]()
故BC正确;
D.乙波波长
![]()
则有
![]()
则
时刻
点处于平衡位置向下振动。再经过时间
![]()
点在波峰,故D错误;
E.
两点距离波源均为各自波长的
倍,又二者振动周期相同、起振方向相同,则二者振动步调相同,当
点处在波峰时,
点也一定处在波峰,故E正确。
故选BCE。
练习册系列答案
相关题目