ÌâÄ¿ÄÚÈÝ
ÈçͼÊúÖ±·ÅÖõĹ⻬ƽÐнðÊôµ¼¹ìMN¡¢PQÏà¾àL£¬ÔÚMµãºÍPµã¼ä½ÓÒ»¸ö×èֵΪRµÄµç×裬ÔÚÁ½µ¼¹ì¼ä OO1O1¡äO¡ä ¾ØÐÎÇøÓòÄÚÓд¹Ö±µ¼¹ìÆ½ÃæÏòÀï¡¢¿íΪdµÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶ÈΪB£®Ò»ÖÊÁ¿Îªm£¬µç×èΪrµÄµ¼Ìå°ôab´¹Ö±¸éÔÚµ¼¹ìÉÏ£¬Óë´Å³¡Éϱ߽߱çÏà¾àd0£®ÏÖʹab°ôÓɾ²Ö¹¿ªÊ¼ÊÍ·Å£¬°ôabÔÚÀ뿪´Å³¡Ç°ÒѾ×öÔÈËÙÖ±ÏßÔ˶¯£¨°ôabÓëµ¼¹ìʼÖÕ±£³ÖÁ¼ºÃµÄµç½Ó´¥ÇÒÏÂÂä¹ý³ÌÖÐʼÖÕ±£³Öˮƽ£¬µ¼¹ìµç×è²»¼Æ£©£®Çó£º
£¨1£©°ôabÔÚÀ뿪´Å³¡Ï±߽çʱµÄËÙ¶È£»
£¨2£©°ôabÔÚͨ¹ý´Å³¡ÇøµÄ¹ý³ÌÖвúÉúµÄ½¹¶úÈÈ£»
£¨3£©ÈôÉèab°ôÓɾ²Ö¹¿ªÊ¼ÊÍ·Å´¦ÎªÏÂÂäÆðµã£¬»³ö°ôÔÚÏÂÂä¸ß¶Èd+d0¹ý³ÌÖÐËÙ¶ÈËæÏÂÂä¸ß¶Èh±ä»¯Ëù¶ÔÓ¦µÄ¸÷ÖÖ¿ÉÄܵÄͼÏß¡£
£¨1£©Éèab°ôÀ뿪´Å³¡±ß½çǰ×öÔÈËÙÔ˶¯µÄËÙ¶ÈΪv£¬
²úÉúµÄµç¶¯ÊÆÎªE = BLv 1·Ö
µç·ÖеçÁ÷ I =
1·Ö
¶Ôab°ô£¬ÓÉÆ½ºâÌõ¼þµÃ mg£BIL = 0 1·Ö
½âµÃ v =
2·Ö
(2) ÓÉÄÜÁ¿Êغ㶨ÂÉ£ºmg(d0 + d) = Eµç +
mv2 1·Ö
½âµÃ
2·Ö
2·Ö
£¨3£©Éè°ô×ÔÓÉÂäÌåd0¸ß¶ÈÀúʱΪt0£¬ÓÉd0 =
gt02£¬µÃt0 = ![]()
°ôÔڴų¡ÖÐÔÈËÙʱËÙ¶ÈΪv =
£¬Éè![]()
1 µ±t0=t£¬¼´d0 =
ʱ£¬°ô½øÈë´Å³¡ºó×öÔÈËÙÖ±ÏßÔË
2 µ±t0 < t£¬¼´d0 <
ʱ£¬°ô½øÈë´Å³¡ºó×öÏȼÓËÙºóÔÈËÙÖ±ÏßÔ˶¯
3 µ±t0£¾t£¬¼´d0£¾
ʱ£¬°ô½øÈë´Å³¡ºó×öÏȼõËÙºóÔÈËÙÖ±ÏßÔ˶¯