ÌâÄ¿ÄÚÈÝ
ΪÁËÑéÖ¤¶¯Äܶ¨Àí£¬Ä³Ñ§Ï°Ð¡×éÔÚʵÑéÊÒ×é×°ÁËÈçͼ1ËùʾµÄ×°Ö㬱¸ÓÐÏÂÁÐÆ÷²Ä£º´òµã¼ÆÊ±Æ÷ËùÓõÄѧÉúµçÔ´¡¢µ¼Ïß¡¢¸´Ð´Ö½¡¢ÌìÆ½¡¢Ï¸É³£®ËûÃdzÆÁ¿»¬¿éµÄÖÊÁ¿ÎªM¡¢É³ºÍСͰµÄ×ÜÖÊÁ¿Îªm£®µ±»¬¿éÁ¬½ÓÉÏÖ½´ø£¬ÈÃϸÏß¿ç¹ý»¬ÂÖ²¢Ðü¹Ò¿ÕµÄСͰʱ£¬»¬¿é´¦ÓÚ¾²Ö¹×´Ì¬£®ÒªÍê³É¸ÃʵÑ飬Çë»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÒªÍê³É±¾ÊµÑ飬»¹È±ÉÙµÄʵÑéÆ÷²ÄÊÇ
£¨2£©ÊµÑéʱΪ±£Ö¤»¬¿éÊܵ½µÄºÏÁ¦Óëɳ¡¢Ð¡Í°µÄ×ÜÖØÁ¦´óС»ù±¾ÏàµÈ£¬É³ºÍСͰµÄ×ÜÖÊÁ¿Ó¦Âú×ãµÄʵÑéÌõ¼þÊÇ
£¨3£©ÔÚÂú×㣨2£©ÎʵÄÌõ¼þÏ£¬ÈÃСͰ´ø¶¯»¬¿é¼ÓËÙÔ˶¯£¬Èçͼ2ËùʾΪ´òµã¼ÆÊ±Æ÷Ëù´òµÄÖ½´øµÄÒ»²¿·Ö£¬Í¼ÖÐA¡¢B¡¢C¡¢D¡¢EÊǰ´Ê±¼äÏȺó˳ÐòÈ·¶¨µÄ¼ÆÊýµã£¬ÏàÁÚ¼ÆÊýµã¼äµÄʱ¼ä¼ä¸ôΪT£¬ÏàÁÚ¼ÆÊýµã¼äµÄ¾àÀë±ê×¢ÔÚͼÉÏ£¬µ±µØÖØÁ¦¼ÓËÙ¶ÈΪg£¬ÔòÔÚB¡¢DÁ½µã¼ä¶Ô»¬¿éÓÃʵÑéÑéÖ¤¶¯Äܶ¨Àí±í´ïʽΪ
£¨1£©ÒªÍê³É±¾ÊµÑ飬»¹È±ÉÙµÄʵÑéÆ÷²ÄÊÇ
¿Ì¶È³ß
¿Ì¶È³ß
£®£¨2£©ÊµÑéʱΪ±£Ö¤»¬¿éÊܵ½µÄºÏÁ¦Óëɳ¡¢Ð¡Í°µÄ×ÜÖØÁ¦´óС»ù±¾ÏàµÈ£¬É³ºÍСͰµÄ×ÜÖÊÁ¿Ó¦Âú×ãµÄʵÑéÌõ¼þÊÇ
ɳºÍСͰµÄ×ÜÖÊÁ¿Ô¶Ð¡ÓÚ»¬¿éµÄÖÊÁ¿
ɳºÍСͰµÄ×ÜÖÊÁ¿Ô¶Ð¡ÓÚ»¬¿éµÄÖÊÁ¿
£¬ÊµÑéʱΪ±£Ö¤Ï¸ÏßÀÁ¦µÈÓÚ»¬¿éËùÊܵĺÏÍâÁ¦£¬Ê×ÏÈÒª×öµÄ²½ÖèÊÇÆ½ºâĦ²ÁÁ¦
ƽºâĦ²ÁÁ¦
£®£¨3£©ÔÚÂú×㣨2£©ÎʵÄÌõ¼þÏ£¬ÈÃСͰ´ø¶¯»¬¿é¼ÓËÙÔ˶¯£¬Èçͼ2ËùʾΪ´òµã¼ÆÊ±Æ÷Ëù´òµÄÖ½´øµÄÒ»²¿·Ö£¬Í¼ÖÐA¡¢B¡¢C¡¢D¡¢EÊǰ´Ê±¼äÏȺó˳ÐòÈ·¶¨µÄ¼ÆÊýµã£¬ÏàÁÚ¼ÆÊýµã¼äµÄʱ¼ä¼ä¸ôΪT£¬ÏàÁÚ¼ÆÊýµã¼äµÄ¾àÀë±ê×¢ÔÚͼÉÏ£¬µ±µØÖØÁ¦¼ÓËÙ¶ÈΪg£¬ÔòÔÚB¡¢DÁ½µã¼ä¶Ô»¬¿éÓÃʵÑéÑéÖ¤¶¯Äܶ¨Àí±í´ïʽΪ
mg(x2+x3)=
[(x3+x4)2-(x1+x2)2]£®
| M |
| 8T2 |
mg(x2+x3)=
[(x3+x4)2-(x1+x2)2]£®
£®£¨ÓÃÌâÖÐËù¸øµÄ±íʾÊý¾ÝµÄ×Öĸ±íʾ£©| M |
| 8T2 |
·ÖÎö£º£¨1£©¸ù¾Ý±¾ÊµÑéµÄÔÀí£ºÐèÒªÑéÖ¤mgxÓë¡÷EkµÄ¹ØÏµ£¬ÐèÒª²âÁ¿Î»ÒÆx£¬Óõ½¿Ì¶È³ß£®
£¨2£©ÎªÊ¹Éþ×ÓÀÁ¦ÎªºÏÁ¦£¬Ó¦ÏÈÆ½ºâĦ²ÁÁ¦£¬Éþ×ÓÀÁ¦½üËÆµÈÓÚɳºÍɳͰµÄÖØÁ¦£¬Ó¦Âú×ãɳºÍɳͰ×ÜÖÊÁ¿Ô¶Ð¡ÓÚ»¬¿éµÄÖÊÁ¿£®
£¨3£©¸ù¾Ý¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ£ºÒ»¶Îʱ¼äÄ򵀮½¾ùËٶȵÈÓÚÖеãʱ¿ÌµÄ˲ʱËÙ¶È£¬Çó³öB¡¢DµãµÄËÙ¶È£¬¼´¿ÉµÃµ½¶¯Äܶ¨Àí±í´ïʽ£®
£¨2£©ÎªÊ¹Éþ×ÓÀÁ¦ÎªºÏÁ¦£¬Ó¦ÏÈÆ½ºâĦ²ÁÁ¦£¬Éþ×ÓÀÁ¦½üËÆµÈÓÚɳºÍɳͰµÄÖØÁ¦£¬Ó¦Âú×ãɳºÍɳͰ×ÜÖÊÁ¿Ô¶Ð¡ÓÚ»¬¿éµÄÖÊÁ¿£®
£¨3£©¸ù¾Ý¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ£ºÒ»¶Îʱ¼äÄ򵀮½¾ùËٶȵÈÓÚÖеãʱ¿ÌµÄ˲ʱËÙ¶È£¬Çó³öB¡¢DµãµÄËÙ¶È£¬¼´¿ÉµÃµ½¶¯Äܶ¨Àí±í´ïʽ£®
½â´ð£º½â£º£¨1£©¸ù¾ÝÌâÒⱾʵÑéÐèÒª²âÁ¿»¬¿éµÄÎ»ÒÆ£¬ËùÒÔ»¹È±ÉÙµÄÆ÷²ÄÊǿ̶ȳߣ®
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÖªµ±É³ºÍɳͰµÄ×ÜÖÊÁ¿Ô¶Ð¡ÓÚ»¬¿éµÄÖÊÁ¿Ê±£¬Éþ×ÓÀÁ¦²Å½üËÆµÈÓÚɳºÍɳͰµÄÖØÁ¦£¬ËùÒÔɳºÍɳͰӦÂú×ãµÄʵÑéÌõ¼þÊÇɳºÍɳͰµÄ×ÜÖÊÁ¿Ô¶Ð¡ÓÚ»¬¿éµÄÖÊÁ¿£¬ÓÉÊÜÁ¦·ÖÎö¿ÉÖª£¬Îª±£Ö¤Ï¸ÏßÀÁ¦ÎªÄ¾¿éµÄºÏÍâÁ¦£¬Ê×ÏÈÒª×öµÄÊÇÆ½ºâĦ²ÁÁ¦£®
£¨3£©ÔÚB¡¢DÁ½µã¼ä£¬¸ù¾Ý¶¯Äܶ¨ÀíʵÑéÒªÑéÖ¤µÄ±í´ïʽΪ£ºmg£¨x2+x3£©=
M
-
M
¶ø¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛµÃÖª£¬vB=
£¬vD=
ÁªÁ¢½âµÃ£ºmg(x2+x3)=
[(x3+x4)2-(x1+x2)2]£®
¹Ê´ð°¸Îª£º£¨1£©¿Ì¶È³ß£»£¨2£©É³ºÍСͰµÄ×ÜÖÊÁ¿Ô¶Ð¡ÓÚ»¬¿éµÄÖÊÁ¿£¬Æ½ºâĦ²ÁÁ¦£»£¨3£©mg(x2+x3)=
[(x3+x4)2-(x1+x2)2]£®
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÖªµ±É³ºÍɳͰµÄ×ÜÖÊÁ¿Ô¶Ð¡ÓÚ»¬¿éµÄÖÊÁ¿Ê±£¬Éþ×ÓÀÁ¦²Å½üËÆµÈÓÚɳºÍɳͰµÄÖØÁ¦£¬ËùÒÔɳºÍɳͰӦÂú×ãµÄʵÑéÌõ¼þÊÇɳºÍɳͰµÄ×ÜÖÊÁ¿Ô¶Ð¡ÓÚ»¬¿éµÄÖÊÁ¿£¬ÓÉÊÜÁ¦·ÖÎö¿ÉÖª£¬Îª±£Ö¤Ï¸ÏßÀÁ¦ÎªÄ¾¿éµÄºÏÍâÁ¦£¬Ê×ÏÈÒª×öµÄÊÇÆ½ºâĦ²ÁÁ¦£®
£¨3£©ÔÚB¡¢DÁ½µã¼ä£¬¸ù¾Ý¶¯Äܶ¨ÀíʵÑéÒªÑéÖ¤µÄ±í´ïʽΪ£ºmg£¨x2+x3£©=
| 1 |
| 2 |
| v | 2 D |
| 1 |
| 2 |
| v | 2 B |
¶ø¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛµÃÖª£¬vB=
| x1+x2 |
| 2T |
| x3+x4 |
| 2T |
ÁªÁ¢½âµÃ£ºmg(x2+x3)=
| M |
| 8T2 |
¹Ê´ð°¸Îª£º£¨1£©¿Ì¶È³ß£»£¨2£©É³ºÍСͰµÄ×ÜÖÊÁ¿Ô¶Ð¡ÓÚ»¬¿éµÄÖÊÁ¿£¬Æ½ºâĦ²ÁÁ¦£»£¨3£©mg(x2+x3)=
| M |
| 8T2 |
µãÆÀ£ºÃ÷ȷʵÑéÔÀíÊǽâ¾öʵÑéÎÊÌâµÄ¹Ø¼ü£¬±¾ÊµÑéµÄ¹Ø¼üÊÇÁ½¸öÎÊÌ⣬һ¸öÊÇÔõÑù²ÅÄÜʹ»¬¿éÊܵ½µÄºÏÁ¦ÊÇÉþ×ÓµÄÀÁ¦£¬ÔÙÒ»¸öÊÇÔõÑù²ÅÄÜʹÉþ×ÓÀÁ¦½üËÆµÈÓÚСͰµÄÖØÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿