ÌâÄ¿ÄÚÈÝ

11£®ÊÔ·Ö±ð·ÖÎöÏÂÃæÈýÖÖÇé¿öϼ×ÎïÌåÔ˶¯µÄƽ¾ùËÙ¶È£®
£¨1£©¼××ö±äËÙÖ±ÏßÔ˶¯£¬Ç°Ò»°ëÎ»ÒÆÆ½¾ùËÙ¶ÈΪv1£¬ºóÒ»°ëÎ»ÒÆÆ½¾ùËÙ¶ÈΪv2£¬È«³ÌµÄƽ¾ùËÙ¶ÈΪ¶à´ó£¿
£¨2£©¼××ö±äËÙÖ±ÏßÔ˶¯£¬Èô¼×ǰһ°ëʱ¼äµÄƽ¾ùËÙ¶ÈΪv1£¬ºóÒ»°ëʱ¼äµÄƽ¾ùËÙ¶ÈΪv2£¬ÔòÈ«³ÌµÄƽ¾ùËٶȶà´ó£¿
£¨3£©¼××ö±äËÙÖ±ÏßÔ˶¯£¬Èô¼×ǰһ°ëʱ¼äÄ򵀮½¾ùËÙ¶ÈΪv1£¬È«³ÌµÄƽ¾ùËÙ¶ÈΪv2£¬ÔòºóÒ»°ëʱ¼äÄ򵀮½¾ùËÙ¶ÈÊǶàÉÙ£¿

·ÖÎö ͨ¹ýƽ¾ùËٶȵĹ«Ê½×¥×¡×ÜÎ»ÒÆÏàµÈ£¬Éè×ÜÎ»ÒÆÎªx£¬Çó³öÔ˶¯µÄʱ¼äÓëÎ»ÒÆÖ®¼äµÄ¹ØÏµ£¬¼´¿ÉÇó³ö½á¹û£»

½â´ð ½â£ºÉè×ÜÎ»ÒÆÎªx£¬×Üʱ¼äΪt£¬
£¨1£©Ç°Ò»°ëÎ»ÒÆÆ½¾ùËÙ¶ÈΪv1£¬ºóÒ»°ëÎ»ÒÆÆ½¾ùËÙ¶ÈΪv2ʱ£¬Ô˶¯µÄʱ¼ä£º$t¡ä=\frac{\frac{x}{2}}{{v}_{1}}+\frac{\frac{x}{2}}{{v}_{2}}=\frac{£¨{v}_{1}+{v}_{2}£©x}{2{v}_{1}{v}_{2}}$
ƽ¾ùËÙ¶È£º$\overline{v}=\frac{x}{t¡ä}=\frac{2{v}_{1}{v}_{2}}{{v}_{1}+{v}_{2}}$
£¨2£©Èôǰһ°ëʱ¼äµÄƽ¾ùËÙ¶ÈΪv1£¬ºóÒ»°ëʱ¼äµÄƽ¾ùËÙ¶ÈΪv2£¬ÓУºx=$\frac{t}{2}£¨{v}_{1}+{v}_{2}£©$
ÓÖ£º$x=\overline{v¡ä}t$
ËùÒÔ£º$\overline{v¡ä}=\frac{x}{t}=\frac{{v}_{1}+{v}_{2}}{2}$
£¨3£©Èôǰһ°ëʱ¼äÄ򵀮½¾ùËÙ¶ÈΪv1£¬È«³ÌµÄƽ¾ùËÙ¶ÈΪv2£¬Ôò£º$x={v}_{2}t={v}_{1}•\frac{t}{2}+{v}_{3}•\frac{t}{2}$
ËùÒÔ£ºv3=2v2-v1
´ð£º£¨1£©¼××ö±äËÙÖ±ÏßÔ˶¯£¬Ç°Ò»°ëÎ»ÒÆÆ½¾ùËÙ¶ÈΪv1£¬ºóÒ»°ëÎ»ÒÆÆ½¾ùËÙ¶ÈΪv2£¬È«³ÌµÄƽ¾ùËÙ¶ÈΪ$\frac{2{v}_{1}{v}_{2}}{{v}_{1}+{v}_{2}}$£»
£¨2£©¼××ö±äËÙÖ±ÏßÔ˶¯£¬Èô¼×ǰһ°ëʱ¼äµÄƽ¾ùËÙ¶ÈΪv1£¬ºóÒ»°ëʱ¼äµÄƽ¾ùËÙ¶ÈΪv2£¬ÔòÈ«³ÌµÄƽ¾ùËÙ¶ÈÊÇ$\frac{{v}_{1}+{v}_{2}}{2}$£»
£¨3£©¼××ö±äËÙÖ±ÏßÔ˶¯£¬Èô¼×ǰһ°ëʱ¼äÄ򵀮½¾ùËÙ¶ÈΪv1£¬È«³ÌµÄƽ¾ùËÙ¶ÈΪv2£¬ÔòºóÒ»°ëʱ¼äÄ򵀮½¾ùËÙ¶ÈÊÇ2 v2- v1

µãÆÀ ±¾Ì⿼²éÁËÆ½¾ùËٶȵÄÔËÓ㬽âÌâ¹Ø¼üÊÇÕÆÎÕÆ½¾ùËٶȵÈÓÚÎ»ÒÆÓëʱ¼äµÄ±ÈÖµ£®±¾Ì⻹¿ÉÒÔÀûÓÃÌØÊâÖµ´úÈëÇó³öÁ½ÈËÔ˶¯µÄʱ¼äÀ´Åжϣ¬»á±È³£¹æ·½·¨¼ò±ãºÜ¶à£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø