题目内容

一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ.初始时,传送带与煤块都是静止的.现让传送带以恒定的加速度a0开始运动,当其速度达到v0后,便以此速度做匀速运动.经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动.求此黑色痕迹的长度.

答案:
解析:

  解:如图,A表示爆炸处,O表示观测者所在处,h表示云层下表面的高度.用t1表示爆炸声直接传到O处所经时间,则有dvt1  ①

  用t2表示爆炸声经云层反射到达O处所经历时间,因为入射角等于反射角,故有

  2vt2  ②

  已知t2t1=Δt  ③

  联立①②③式,可得h

  代入数值得h2.0×103m郝双制作

  解:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度a小于传送带的加速度a0.根据牛顿定律,可得

  a=μg

  设经历时间t,传送带由静止开始加速到速度等于v0,煤块则由静止加速到v,有

  v0a0tvat

  由于aa0,故vv0,煤块继续受到滑动摩擦力的作用.再经过时间,煤块的速度由v增加到v0,有vva郝双制作

  此后,煤块与传送带运动速度相同,相对于传送带不再滑动,不再产生新的痕迹.

  设在煤块的速度从0增加到v0的整个过程中,传送带和煤块移动的距离分别为s0s,有

  s0a0t2v0s

  传送带上留下的黑色痕迹的长度ls0s

  由以上各式得


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网