ÌâÄ¿ÄÚÈÝ
20£®Ë®Æ½×ÀÃæ·ÅÖôøÓмÓËÙ¶È´«¸ÐÆ÷µÄ×ÜÖÊÁ¿ÎªMµÄС³µ£¬³µµÄÁ½¶ËÓÉÇáÖÊϸÏßÈÆ¹ý×ÀÃæÁ½¶Ë»¬ÂÖ²¢ÔÚÁ½¶Ë¸÷Ðü¹Ò×ÜÖÊÁ¿ÎªmµÄ¶à¸ö¹³Â룮ʵÑéÖУ¬Ð¡¹âÿ´ÎÓÉ×ó²àÈ¡ÏÂÖÊÁ¿Îª¡÷mµÄ¹³Âë²¢¹ÒÖÁÓÒ²àÐüÏßÏ·½£¬½«Ï³µÓɾ²Ö¹ÊÍ·Å£¬ÀûÓô«¸ÐÆ÷²âÁ¿Ð¡³µ¼ÓËٶȲ¢Öð´Î¼ÇÂ¼ÒÆ¶¯¹ýµÄíÀÂëÖÊÁ¿ºÍÏàÓ¦¼ÓËÙ¶ÈÖµ£¬¸ù¾Ý¶à´ÎʵÑéµÃ³öµÄÊý¾Ý£¬Ð¡¹âͬѧ×÷³öÈçͼ2µÄa-¡÷mͼÏó£®
£¨1£©¸ù¾ÝÉÏÊöÉè¼Æ£¬ÒÔÏÂ˵·¨ÕýÈ·µÄÊÇBD
A£®ÓÉÓÚϵͳ´æÔÚĦ²Á£¬ÊµÑéÖбØÐëÏÈÆ½ºâĦ²ÁÁ¦£¬²ÅÄܼÌÐø½øÐÐʵÑé
B£®±¾ÊµÑéÖÐËä´æÔÚĦ²ÁÁ¦Ó°Ï죬µ«ÎÞÐèÆ½ºâĦ²ÁÁ¦Ò²¿ÉÒÔ½øÐÐʵÑé
C£®±¾ÊµÑéÖбØÐëÒªÇóС³µÖÊÁ¿M£¾£¾m
D£®±¾ÊµÑéÖÐÎÞÐëÒªÇóС³µÖÊÁ¿M£¾£¾m
£¨2£©ÀûÓÃʵÑéÖÐ×÷³öa-¡÷mͼÏߣ¬¿ÉÒÔ·ÖÎö³öϵͳĦ²ÁÁ¦´óСΪ$2{m}_{0}^{\;}g$£¬¼ÓËÙ¶ÈaÓëÒÆ¶¯µÄÖÊÁ¿¡÷m¼ä´æÔÚ¹ØÏµÎª$a=\frac{2g}{M+2m}¡÷m-\frac{{2{m_0}g}}{M+2m}$£®
·ÖÎö £¨1£©ÒÀ¾ÝʵÑéÔÀí£¬½áºÏʵÑéÄ¿±ê£¬¼°¼ÓËÙ¶È´«¸ÐÆ÷µÄ×÷Ó㬼´¿ÉÇó½â£»
£¨2£©¸ù¾ÝͼÏóÖÐa=0ʱ£¬ÊÜÁ¦Æ½ºâ£¬¼´¿ÉÈ·¶¨ÏµÍ³Ä¦²ÁÁ¦´óС£¬ÔÙÒÀ¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬¼´¿ÉÁгöϵͳ¼ÓËÙ¶ÈaÓëÒÆ¶¯µÄÖÊÁ¿¡÷m¼ä¹ØÏµÊ½£®
½â´ð ½â£º£¨1£©AB¡¢±¾ÊµÑéÖÐËä´æÔÚĦ²ÁÁ¦Ó°Ï죬µ«ÊÇΪÁËÑé֤ţ¶ÙµÚ¶þ¶¨ÂÉÖмÓËÙ¶ÈÓëÁ¦µÄ¹ØÏµ£¬ÇÒ¼ÓËÙ¶Èͨ¹ý´«¸ÐÆ÷¿ÉÖª£¬Òò´ËÎÞÐëÆ½ºâĦ²ÁÁ¦£¬¹ÊA´íÎó£¬BÕýÈ·£»
CD¡¢ÒòѡȡϵͳΪÑо¿¶ÔÏó£¬Òò´Ë²»ÐèҪС³µµÄÖÊÁ¿Ô¶´óÓÚ¹³Âë×ÜÖÊÁ¿£¬¹ÊC´íÎó£¬DÕýÈ·£»
¹ÊÑ¡£ºBD
£¨2£©ÒÀ¾Ý×÷³öa-¡÷mͼÏߣ¬¿ÉÖª£¬µ± a=0ʱ£¬Ôòϵͳ´¦ÓÚÆ½ºâ״̬£¬ÔòÓÐС³µÊܵ½µÄĦ²ÁÁ¦´óСÓëϵͳµÄÍâÁ¦Æ½ºâ£¬¼´Îª£ºf=$2{m}_{0}^{\;}g$£»
ÔÙÓɸù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÔòÓУºF-f=£¨M+2m£©a£¬
¼´2¡÷mg-$2{m}_{0}^{\;}g$=£¨M+2m£©a£¬
ÕûÀíµÃ£º$a=\frac{2g}{M+2m}¡÷m-\frac{{2{m_0}g}}{M+2m}$£®
¹Ê´ð°¸Îª£º£¨1£©BD£»£¨2£©2m0g£¬$a=\frac{2g}{M+2m}¡÷m-\frac{{2{m_0}g}}{M+2m}$£®
µãÆÀ ¿¼²éʵÑéÌâÖУ¬Æ½ºâĦ²ÁÁ¦µÄÒªÇ󣬼°Ð¡³µÖÊÁ¿M£¾£¾mµÄÌõ¼þ£¬ÕÆÎÕͼÏóÖÐºá½Ø¾àµÄº¬Ò壬Àí½âÅ£¶ÙµÚ¶þ¶¨ÂɵÄÓ¦Óã®
| A£® | $\frac{\sqrt{2}}{2}$F | B£® | 2F | C£® | $\sqrt{2}$F | D£® | F |
| A£® | ¡°ÉñÖÛʮһºÅ¡±±È¡°Ì칬¶þºÅ¡±ÔËÐÐËÙ¶ÈС | |
| B£® | ¡°ÉñÖÛʮһºÅ¡±±È¡°Ì칬¶þºÅ¡±µÄÔËÐÐÖÜÆÚ¶Ì | |
| C£® | ¡°ÉñÖÛʮһºÅ¡±±È¡°Ì칬¶þºÅ¡±µÄ¼ÓËÙ¶ÈС | |
| D£® | ¡°ÉñÖÛʮһºÅ¡±ÀïÃæµÄÓԱÊܵØÇòµÄÎüÒýÁ¦ÎªÁã |
| A£® | $\frac{x}{CR}$ | B£® | $\frac{x}{BR}$ | C£® | $\frac{Cx}{BLR}$ | D£® | $\frac{Bx}{CLR}$ |
| A£® | 2¦µ | B£® | 3¦µ | C£® | 4¦µ | D£® | 10¦µ |
| A£® | ·ÖÁ¦²»¿ÉÄÜ´óÓÚºÏÁ¦ | B£® | ·ÖÁ¦¿ÉÄÜÓëºÏÁ¦·½Ïò´¹Ö± | ||
| C£® | ºÏÁ¦´óС×ÜÊǽéÓÚÁ½¸ö·ÖÁ¦Ö®¼ä | D£® | ºÏÁ¦Óë·ÖÁ¦²»¿ÉÄܶ¼ÔÚÒ»ÌõÖ±ÏßÉÏ |