ÌâÄ¿ÄÚÈÝ
13£®| A£® | W=0 | B£® | W=-$\frac{{Mmh{{sin}^2}¦È}}{{£¨{M+m}£©£¨{M+m{{sin}^2}¦È}£©}}$g | ||
| C£® | W=$\frac{{Mmh{{cos}^2}¦È}}{{£¨{M+m}£©£¨{M+m{{sin}^2}¦È}£©}}$g | D£® | W=-$\frac{M{m}^{2}h{cos}^{2}¦È}{£¨M+m£©£¨M+m{sin}^{2}¦È£©}g$ |
·ÖÎö ÓÉÓÚÐ±ÃæÊÇÔڹ⻬µÄË®Æ½ÃæÉÏ£¬²¢Ã»Óй̶¨£¬ÎïÌåÓëÐ±ÃæÏ໥×÷ÓûáÊ¹Ð±ÃæºóÍË£¬ÓÉÓÚÐ±ÃæºóÍË£¬ÎïÌåÑØ×ÅÐ±ÃæÏ»¬Â·ÏßÓëµØÃæ¼Ð½Ç£¾¦È£¬ÓëÎïÌåÑØ×Ź̶¨Ð±ÃæÏ»¬½ØÈ»²»Í¬£®ÓÉÓÚºöÂÔÒ»ÇÐĦ²ÁÁ¦£¬ÓÉÓÚ´ËÊ±Ð±ÃæµÄÖ§³ÖÁ¦ÓëBµÄÎ»ÒÆ·½Ïò³É¶Û½Ç£¬ËùÒÔÐ±ÃæµÄÖ§³ÖÁ¦¶ÔBËù×ö¸º¹¦£®
½â´ð ½â£ºA¡¢ÓÉÓÚÐ±ÃæÊÇÔڹ⻬µÄË®Æ½ÃæÉÏ£¬²¢Ã»Óй̶¨£¬ÎïÌåÓëÐ±ÃæÏ໥×÷ÓûáÊ¹Ð±ÃæºóÍË£¬ÓÉÓÚÐ±ÃæºóÍË£¬ÎïÌåÑØ×ÅÐ±ÃæÏ»¬Â·ÏßÓëµØÃæ¼Ð½Ç£¾¦È£¬ÓëÎïÌåÑØ×Ź̶¨Ð±ÃæÏ»¬½ØÈ»²»Í¬£®Õû¸öϵͳÎÞĦ²Á£¬ÓÉÓÚ´ËÊ±Ð±ÃæµÄÖ§³ÖÁ¦ÓëBµÄÎ»ÒÆ·½Ïò³É¶Û½Ç£¬ËùÒÔÐ±ÃæµÄÖ§³ÖÁ¦¶ÔBËù×ö¸º¹¦£®¹ÊA´íÎó£¬C´íÎó£®
B¡¢¹¦µÄµ¥Î»Îª1J=1N•m£¬
°´ÕÕµ¥Î»ÖÆ£¬$\frac{M{m}^{2}h{cos}^{2}¦È}{£¨M+m£©£¨M+m{sin}^{2}¦È£©}g$µÄµ¥Î»ÊÇN•m£¬$\frac{Mmh{sin}^{2}¦È}{£¨M+m£©£¨M+m{sin}^{2}¦È£©}$µÄµ¥Î»ÊÇm£¬¹ÊB´íÎó£¬DÕýÈ·£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éÁ˵¥Î»ÖƺÍ×ö¸º¹¦µÄÅжϣ¬½â¾ö´ËÀàÌâÄ¿Ö÷Òª·½·¨ÊÇÀûÓÃËùѧµÄ֪ʶÓÃÌÔÌ·¨½øÐд¦Àí£®
| A£® | $\frac{T}{2£¨\sqrt{£¨\frac{{r}_{a}}{{r}_{b}}£©^{3}}+1£©}$ | B£® | $\frac{T}{\sqrt{£¨\frac{{r}_{a}}{{r}_{b}}£©^{3}}-1}$ | C£® | $\frac{T}{2£¨\sqrt{£¨\frac{{r}_{a}}{{r}_{b}}£©^{3}}-1£©}$ | D£® | $\frac{T}{\sqrt{£¨\frac{{r}_{a}}{{r}_{b}}£©^{3}}+1}$ |
| A£® | 20£º1 | B£® | 10$\sqrt{2}$£º1 | C£® | 10£º1 | D£® | 1£º10 |
| A£® | ¼×´ø¸ºµçºÉ£¬ÒÒ´øÕýµçºÉ | |
| B£® | ÂåÂ××ÈÁ¦¶Ô¼××öÕý¹¦ | |
| C£® | ¼×µÄËÙÂÊ´óÓÚÒÒµÄËÙÂÊ | |
| D£® | ¼×Ôڴų¡ÖÐÔ˶¯µÄʱ¼ä´óÓÚÒÒÔڴų¡ÖÐÔ˶¯µÄʱ¼ä |