ÌâÄ¿ÄÚÈÝ
Èçͼ¼×ËùʾÊÇÒ»ÖÖËÙ¶È´«¸ÐÆ÷µÄ¹¤×÷ÔÀíͼ£¬Õâ¸öϵͳÖÐÖ»ÓÐÒ»¸ö²»¶¯µÄСºÐ×ÓB£¬¹¤×÷ʱСºÐ×ÓBÏò±»²âÎïÌå·¢³ö¶ÌÔݵij¬Éù²¨Âö³å£¬Âö³å±»Ô˶¯µÄÎïÌå·´ÉäºóÓÖ±»BºÐ½ÓÊÜ£¬´ÓBºÐ·¢É䳬Éù²¨¿ªÊ¼¼ÆÊ±£¬¾Ê±¼ä¡÷t0Ôٴη¢É䳬Éù²¨Âö³å£¬Í¼ÒÒÊÇÁ¬ÐøÁ½´Î·¢ÉäµÄ³¬Éù²¨µÄÎ»ÒÆ-ʱ¼äͼÏ󣬹ØÓÚ¶Ô´ËͼÏóµÄÃèÊöÕýÈ·µÄÊÇ£¨¡¡¡¡£©

A£®ÔÚ³£Î³£Ñ¹Ï£¬
| ||||
B£®ÎïÌåµÄƽ¾ùËÙ¶ÈΪv=
| ||||
C£®ÎïÌåµÄƽ¾ùËÙ¶ÈΪv=
| ||||
| D£®Ëù²âµÄƽ¾ùËٶȿɽüËÆ¿´×öÎïÌåµÄ˲ʱËÙ¶È |
A¡¢ÓÉͼ֪³¬Éù²¨ÔÚ
ʱ¼äÄÚͨ¹ýÎ»ÒÆÎªx1£¬Ôò³¬Éù²¨µÄËÙ¶ÈΪvÉù=
=
£®ÓÉͼ¿ÉÖª£º³¬Éù²¨Í¨¹ýÎ»ÒÆÎªx2ʱ£¬ËùÓÃʱ¼äΪ
£¬Ôò³¬Éù²¨µÄËÙ¶ÈΪvÉù£¾
=
£®¹ÊA´íÎó£®
B¡¢C¡¢ÓÉÌ⣺ÎïÌåͨ¹ýµÄÎ»ÒÆÎªx2-x1ʱ£¬ËùÓÃʱ¼äΪ
-
+¡÷t0=
£¨t2-t1+¡÷t0£©£¬ÎïÌåµÄƽ¾ùËÙ¶ÈΪ
=
=
£®¹ÊBC´íÎó£®
D¡¢ÓÉÓÚ³¬Éù²¨Ëٶȼ«¿ì£¬Ê±¼ä
+
+¡÷t0ºÜ¶Ì£¬Ëù²âµÄƽ¾ùËٶȿɽüËÆ¿´×öÎïÌåµÄ˲ʱËÙ¶È£®¹ÊDÕýÈ·£®
¹ÊÑ¡D
| t1 |
| 2 |
| x1 | ||
|
| 2x1 |
| t1 |
| t2-¡÷t0 |
| 2 |
| x2 | ||
|
| 2x2 |
| t2 |
B¡¢C¡¢ÓÉÌ⣺ÎïÌåͨ¹ýµÄÎ»ÒÆÎªx2-x1ʱ£¬ËùÓÃʱ¼äΪ
| t2-¡÷t0 |
| 2 |
| t1 |
| 2 |
| 1 |
| 2 |
| . |
| v |
| x2-x1 | ||
|
| 2(x2-x1) |
| t2-t1+¡÷t0 |
D¡¢ÓÉÓÚ³¬Éù²¨Ëٶȼ«¿ì£¬Ê±¼ä
| t1 |
| 2 |
| t2-¡÷t0 |
| 2 |
¹ÊÑ¡D
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿