题目内容
11.(1)若小球受到的摩擦力恰好为零,求此时的角速度ω1及弹力N1的大小;
(2)若小球即将相对于大圆环向外滑动,求角速度ω2.
分析 (1)小球绕着竖直轴旋转时做匀速圆周运动,摩擦力恰好为零时,由其重力和圆环的支持力的合力提供向心力,根据向心力公式及几何关系即可求解角速度ω1及弹力N1的大小.
(2)若小球即将相对于大圆环向外滑动,小球所受的最大静摩擦力沿圆弧切线方向向下,此时由重力、圆环的支持力和静摩擦力的合力提供向心力,根据向心力公式解答.
解答 解:(1)小球绕着竖直轴旋转时做匀速圆周运动,摩擦力恰好为零时,由其重力和圆环的支持力的合力提供向心力,如图所示,由牛顿第二定律得:
竖直方向上有:N1cosθ=mg
水平方向上有:N1sinθ=mω12Rsinθ![]()
解得${N}_{1}=\frac{mg}{cosθ}$=$\frac{5}{4}mg$=12.5N,${ω}_{1}=\sqrt{\frac{g}{Rcosθ}}=\frac{1}{2}\sqrt{\frac{5g}{R}}$=2.5rad/s,
(2)若小球即将相对于大圆环向外滑动,小球所受的最大静摩擦力沿圆弧切线方向向下,根据牛顿第二定律得:
竖直方向上有:N2cosθ=mg+fsinθ
水平方向上有:N2sinθ+fcosθ=mω22Rsinθ
又 f=0.6mg
解得:ω2=$\frac{1}{2}\sqrt{\frac{10g}{R}}$=$\frac{5\sqrt{2}}{2}$rad/s.
答:(1)
此时的角速度ω1为2.5rad/s,弹力N1的大小为12.5N.
(2)角速度ω2为$\frac{5\sqrt{2}}{2}$rad/s.
点评 本题主要考查了向心力公式的直接应用,要明确匀速圆周运动的向心力由合外力提供,能熟练运用几何关系进行求解.
练习册系列答案
相关题目
1.
给平行板电容器充电,断开电源后A极板带正电,B极板带负电.板间有一带电小球C用绝缘细线悬挂,如图所示.小球静止时与竖直方向的夹角为θ,则( )
| A. | 若将B极板向下平移稍许,A、B两板间电势差将减小 | |
| B. | 若将B极板向右平移稍许,电容器的电容将减小 | |
| C. | 若将B极板向上平移稍许,夹角θ将变大 | |
| D. | 轻轻将细线剪断,小球将做斜抛运动 |
1.关于矢量和标量,下列说法中正确的是( )
| A. | 位移是标量 | B. | 矢量是只有大小没有方向的物理量 | ||
| C. | -10 m的位移比5 m的位移小 | D. | -10℃的温度比5℃的温度低 |