ÌâÄ¿ÄÚÈÝ
£¨1£©ÔÈÇ¿µç³¡µÄ³¡Ç¿´óСEΪ¶àÉÙ£¿
£¨2£©a¡¢dµãµÄºÏ³¡Ç¿´óС¸÷Ϊ¶àÉÙ£¿
£¨3£©Èç¹û°ÑOµãµÄÕýµãµçºÉ+QÒÆ×ߣ¬°ÑµãµçºÉ-q´ÓcµãÑØxÖáÒÆµ½aµã£¬Çóµç³¡Á¦×öµÄ¹¦¼°µãc¡¢aÁ½µã¼äµÄµçÊÆ²î£®
·ÖÎö£º£¨1£©¸ù¾ÝµãµçºÉÔÚcµãÊÜÁ¦Æ½ºâÁÐʽ¼´¿ÉÇó½âE£»
£¨2£©¸ù¾ÝʸÁ¿ºÏ³ÉÔÔò£¬¼´¿ÉÇó½âadÁ½µãµÄ³¡Ç¿´óС£»
£¨3£©¸ù¾ÝºãÁ¦×ö¹¦¹«Ê½Çó½âµç³¡Á¦×öµÄ¹¦£¬¸ù¾ÝU=
Çó½âµçÊÆ²î£®
£¨2£©¸ù¾ÝʸÁ¿ºÏ³ÉÔÔò£¬¼´¿ÉÇó½âadÁ½µãµÄ³¡Ç¿´óС£»
£¨3£©¸ù¾ÝºãÁ¦×ö¹¦¹«Ê½Çó½âµç³¡Á¦×öµÄ¹¦£¬¸ù¾ÝU=
| W |
| q |
½â´ð£º½â£º£¨1£©µãµçºÉ-qÔÚcµãÊÜÁ¦Æ½ºâ£¬ÔòÓÐ
k
=qE£¬
½âµÃ£ºE=k
£®
£¨2£©ÔÚaµãµÄºÏ³¡Ç¿´óСΪ
Ea=EQ+E=k
+k
=2k
dµãµÄºÏ³¡Ç¿ÎªµãµçºÉ+QºÍÔÈÇ¿µç³¡µÄʸÁ¿µþ¼Ó£¬ÓÐ
Ed=
=
E=
k
£®
£¨3£©µç³¡Á¦×ö¹¦W=-qE?2r=-2k
£¬
Uca=
=
=
£®
´ð£º£¨1£©ÔÈÇ¿µç³¡µÄ³¡Ç¿´óСEΪk
£»
£¨2£©aµã³¡Ç¿´óСΪ2k
£¬dµãµÄºÏ³¡Ç¿´óСΪ
k
£»
£¨3£©Èç¹û°ÑOµãµÄÕýµãµçºÉ+QÒÆ×ߣ¬°ÑµãµçºÉ-q´ÓcµãÑØxÖáÒÆµ½aµã£¬µç³¡Á¦×öµÄ¹¦Îª-2k
£¬
µãc¡¢aÁ½µã¼äµÄµçÊÆ²îΪ
£®
k
| r2 |
½âµÃ£ºE=k
| Q |
| r2 |
£¨2£©ÔÚaµãµÄºÏ³¡Ç¿´óСΪ
Ea=EQ+E=k
| Q |
| r2 |
| Q |
| r2 |
| Q |
| r2 |
dµãµÄºÏ³¡Ç¿ÎªµãµçºÉ+QºÍÔÈÇ¿µç³¡µÄʸÁ¿µþ¼Ó£¬ÓÐ
Ed=
| E2+EQ2 |
| 2 |
| 2 |
| Q |
| r2 |
£¨3£©µç³¡Á¦×ö¹¦W=-qE?2r=-2k
| r |
Uca=
| Wca |
| q |
| 2qEr |
| q |
| 2kQ |
| r |
´ð£º£¨1£©ÔÈÇ¿µç³¡µÄ³¡Ç¿´óСEΪk
| Q |
| r2 |
£¨2£©aµã³¡Ç¿´óСΪ2k
| Q |
| r2 |
| 2 |
| Q |
| r2 |
£¨3£©Èç¹û°ÑOµãµÄÕýµãµçºÉ+QÒÆ×ߣ¬°ÑµãµçºÉ-q´ÓcµãÑØxÖáÒÆµ½aµã£¬µç³¡Á¦×öµÄ¹¦Îª-2k
| r |
µãc¡¢aÁ½µã¼äµÄµçÊÆ²îΪ
| 2kQ |
| r |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁË¿âÂØ¶¨ÂÉ¡¢³¡Ç¿µÄºÏ³ÉÔÔò¡¢µç³¡Á¦×ö¹¦µÄÌØµã¼°µç³¡Á¦×ö¹¦ÓëµçÊÆ²îÖ®¼äµÄ¹ØÏµ£¬ÄѶÈÊÊÖУ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿