题目内容
如图所示,将质量为m=1 kg的小物块放在长为L=1.5 m的小车左端,车的上表面粗糙,物块与车上表面间动摩擦因数μ=0.5,直径d=1.8 m的光滑半圆形轨道固定在水平面上且直径MON竖直,车的上表面和轨道最低点高度相同,为h=0.65 m,开始车和物块一起以10 m/s的初速度在光滑水平面上向右运动,车碰到轨道后立即停止运动,取g=10 m/s2,求:
![]()
(1)小物块刚进入半圆轨道时对轨道的压力;
(2)小物块落地点距车左端的水平距离。
【答案】
(1)
(2)![]()
【解析】
试题分析:(1)车停止运动后取小物块为研究对象,设其到达车右端时的速度为v1,由动能定理得:
![]()
解得:![]()
刚进入半圆轨道时,设物块受到的支持力为FN ,牛顿第二定律得:
![]()
由牛顿第三定律得:
![]()
解得:
,方向竖直向下。
(2)若小物块能到达半圆轨道最高点,则由机械能守恒定律得:
![]()
解得![]()
恰能过最高点的速度为v3,则![]()
解得![]()
因v2>v3,故小物块从圆轨道最高点做平抛运动,则:
![]()
解得![]()
故小物块距车左端![]()
考点:牛顿运动定律的应用、圆周运动的向心力、机械能守恒定律
练习册系列答案
相关题目