题目内容
(1)F作用于木块的时间;
(2)木块离开平台时的速度大小;
(3)木块落地时距平台边缘的水平距离.
分析:(1)根据牛顿第二定律求出木块匀加速直线运动的加速度,根据匀变速直线运动的位移时间公式求出运动的时间.
(2)根据牛顿第二定律求出匀减速直线运动的加速度,再根据匀变速直线运动的速度位移公式求出木块离开平台的速度大小.
(3)木块离开平台做平抛运动,根据高度求出时间,根据平抛的初速度和时间求出水平位移.
(2)根据牛顿第二定律求出匀减速直线运动的加速度,再根据匀变速直线运动的速度位移公式求出木块离开平台的速度大小.
(3)木块离开平台做平抛运动,根据高度求出时间,根据平抛的初速度和时间求出水平位移.
解答:解:(1)木块在F作用下做与加速直线运动:a1=
=8 m/s2
因为:x1=
at2
解得:t=1s
(2)末速度v1=a1t=8m/s
撤去外力F后,木块做匀减速直线运动
加速度大小:a2=
=2 m/s2
x2=4-x1=3.75m;
v22-v12=-2a2x2
解得:v2=7 m/s.
(3)离开平台后做平抛运动:h=
gt2解得:t=0.6s
x=v0t=4.2m
答:(1)F作用于木块的时间为1s.
(2)木块离开平台时的速度大小为7m/s.
(3)木块落地时距平台边缘的水平距离为4.2m.
| F-μmg |
| m |
因为:x1=
| 1 |
| 2 |
解得:t=1s
(2)末速度v1=a1t=8m/s
撤去外力F后,木块做匀减速直线运动
加速度大小:a2=
| f |
| m |
x2=4-x1=3.75m;
v22-v12=-2a2x2
解得:v2=7 m/s.
(3)离开平台后做平抛运动:h=
| 1 |
| 2 |
x=v0t=4.2m
答:(1)F作用于木块的时间为1s.
(2)木块离开平台时的速度大小为7m/s.
(3)木块落地时距平台边缘的水平距离为4.2m.
点评:加速度是联系力学和运动学的桥梁,通过加速度,可以根据力求运动,也可以根据运动求力.
练习册系列答案
相关题目