题目内容

如图所示,一个竖直放置的圆锥筒可绕其中心轴OO′转动,同内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半,内壁上有一质量为m的小物块,求:
①当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;
②当物块在A点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度.

【答案】分析:(1)当筒不转动时,物块受到重力、筒壁A的摩擦力和支持力作用,根据平衡条件求解.角度由数学知识求出.
(2)当物块在A点随筒做匀速转动,且其受到的摩擦力为零时,由重力和支持力的合力提供物块的向心力,由牛顿第二定律求解.
解答:解:(1)设圆锥母线与水平方向的夹角为θ.当筒不转动时,物块静止在筒壁A点时受到的重力、摩擦力和支持力三力作用而平衡,
   由平衡条件得
     摩擦力的大小:f=mgsinθ=
     支持力的大小:N=mgcosθ=
   (2)当物块在A点随筒做匀速转动,且其所受到的摩擦力为零时,物块在筒壁A点时受到的重力和支持力作用,它们的合力提供向心力,设筒转动的角速度为ω有
   mgtanθ=mω2
由几何关系得  tanθ=   联立解得ω=
答:(1)当筒不转动时,物块静止在筒壁A点受到的摩擦力为
                   支持力的大小为
    (2)当物块在A点随筒做匀速转动,且其受到的摩擦力为零时,筒转动的角速度为
点评:本题是圆锥摆类型.关于向心力应用的基本方程是:指向圆心的合力等于向心力,其实是牛顿第二定律的特例.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网