题目内容
【题目】如图所示,在半径为
的光滑半球形碗中,一根水平放置的轻弹簧两端连接
、
两球,两球静止于半球形碗中。已知
、
球质量均为
,轻弹簧的劲度系数为
,
、
两球之间的距离为
,球的半径远小于碗的半径,求:
![]()
(1)
球对半球形碗的压力大小;
(2)弹簧的原长。
【答案】(1)
;(2)![]()
【解析】
(1)对A球受力分析后根据平衡条件可求得半球形碗对A球的支持力,再由牛顿第三定律可知A球对半球形碗的压力;
(2)对A球受力分析后根据平衡条件得到弹簧的弹力,根据胡克定律求解出压缩量;根据几何关系得到弹簧的长度,相加得到弹簧的原长.
(1)如图,设
,半球形碗对
球的支持力大小为
,弹簧的原长为
,形变量为
.
![]()
由几何关系得![]()
由平衡条件得![]()
联立得![]()
由牛顿第三定律得
球对半球形碗的压力大小![]()
(2)由平衡条件得F=![]()
![]()
联立得:![]()
练习册系列答案
相关题目