ÌâÄ¿ÄÚÈÝ
£¨1£©Îï¿é AÔÚÓëµ²°å BÅöײǰ˲¼äËÙ¶È vµÄ´óС£»
£¨2£©Îï¿é AÔÚÓëµ²°å BÅöײºó˲¼äËÙ¶Èv µÄ´óС£»
£¨3£©µ¯»É×î´óѹËõÁ¿Îª dʱµÄµ¯ÐÔÊÆÄÜ Ep£¨É赯»É´¦ÓÚÔ³¤Ê±µ¯ÐÔÊÆÄÜΪÁ㣩£®
·ÖÎö£º£¨1£©¸ù¾Ý»úеÄÜÊØºã¶¨ÂÉÇó³öÎï¿é AÔÚÓëµ²°å BÅöײǰ˲¼äËÙ¶È vµÄ´óС£®
£¨2£©¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÇó³öÎï¿é AÔÚÓëµ²°å BÅöײºó˲¼äËÙ¶Èv µÄ´óС£®
£¨3£©Çó³öAB¿Ë·þĦ²ÁÁ¦×ö¹¦µÄ´óС£¬½áºÏÄÜÁ¿Êغ㶨ÂÉÇó³öµ¯»É×î´óѹËõÁ¿Îª dʱµÄµ¯ÐÔÊÆÄÜ Ep
£¨2£©¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÇó³öÎï¿é AÔÚÓëµ²°å BÅöײºó˲¼äËÙ¶Èv µÄ´óС£®
£¨3£©Çó³öAB¿Ë·þĦ²ÁÁ¦×ö¹¦µÄ´óС£¬½áºÏÄÜÁ¿Êغ㶨ÂÉÇó³öµ¯»É×î´óѹËõÁ¿Îª dʱµÄµ¯ÐÔÊÆÄÜ Ep
½â´ð£º½â£º£¨1£©ÓÉ»úеÄÜÊØºã¶¨ÂÉ£¬ÓÐm1gh=
m1v2
v=
£¨2£©A¡¢BÔÚÅöײ¹ý³ÌÖÐÄÚÁ¦Ô¶´óÓÚÍâÁ¦£¬Óɶ¯Á¿Êغ㣬ÓÐm1v=£¨m1+m2£©v¡ä
v¡ä=
v=
£®
£¨3£©A¡¢B¿Ë·þĦ²ÁÁ¦Ëù×öµÄ¹¦W=¦Ì£¨m1+m2£©gd
ÓÉÄÜÁ¿Êغ㶨ÂÉ£¬ÓÐ
(m1+m2)v¡ä2=Ep+¦Ì(m1+m2)gd
½âµÃEp=
-¦Ì(m1+m2)gd£®
´ð£º£¨1£©Îï¿é AÔÚÓëµ²°å BÅöײǰ˲¼äËÙ¶È vµÄ´óСv=
£®
£¨2£©Îï¿é AÔÚÓëµ²°å BÅöײºó˲¼äËÙ¶ÈvµÄ´óС
£®
£¨3£©µ¯»É×î´óѹËõÁ¿Îª dʱµÄµ¯ÐÔÊÆÄÜEp=
-¦Ì(m1+m2)gd£®
| 1 |
| 2 |
v=
| 2gh |
£¨2£©A¡¢BÔÚÅöײ¹ý³ÌÖÐÄÚÁ¦Ô¶´óÓÚÍâÁ¦£¬Óɶ¯Á¿Êغ㣬ÓÐm1v=£¨m1+m2£©v¡ä
v¡ä=
| m1 |
| m1+m2 |
| m1 |
| m1+m2 |
| 2gh |
£¨3£©A¡¢B¿Ë·þĦ²ÁÁ¦Ëù×öµÄ¹¦W=¦Ì£¨m1+m2£©gd
ÓÉÄÜÁ¿Êغ㶨ÂÉ£¬ÓÐ
| 1 |
| 2 |
½âµÃEp=
| m12gh |
| m1+m2 |
´ð£º£¨1£©Îï¿é AÔÚÓëµ²°å BÅöײǰ˲¼äËÙ¶È vµÄ´óСv=
| 2gh |
£¨2£©Îï¿é AÔÚÓëµ²°å BÅöײºó˲¼äËÙ¶ÈvµÄ´óС
| m1 |
| m1+m2 |
| 2gh |
£¨3£©µ¯»É×î´óѹËõÁ¿Îª dʱµÄµ¯ÐÔÊÆÄÜEp=
| m12gh |
| m1+m2 |
µãÆÀ£º±¾Ì⿼²éÁË»úеÄÜÊØºã¶¨ÂÉ¡¢¶¯Á¿Êغ㶨ÂÉ¡¢ÄÜÁ¿Êغ㶨ÂɵÄ×ÛºÏÔËÓã¬ÄѶȲ»´ó£¬Ðè¼ÓÇ¿Õâ·½ÃæµÄѵÁ·£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿