题目内容

货车正在以v1=10m/s的速度在平直的公路上前进,货车司机突然发现在其正后方S0=25米处有一辆小车以v2=20m/s的速度做同方向的匀速直线运动,货车司机为了不让小车追上,立即加大油门做匀加速运动。

求:(1)若货车的加速度大小为a=4m/s2,小车能否追上货车?若追得上,则经多长时间追上?若追不上,小车与货车相距的最近距离为多少?

(2)若要保证小车追上货车,则货车的加速度应满足什么条件?

 

【答案】

解:(1)当V=V时,即:

                    V1+at= V

                     t=2.5s

               货车位移: S= V1 t+at2/2 

=37.5m

小车位移:S= V2 t  

=50m

                 因为:S小<S+25  

                 所以小车没有追上货车

                 最小距离d= S+25-S

=12.5m  

(2)假设货车的加速度为a,经t秒小车恰好追上货车

当V=V时,即:

                    V1+at= V2        

                 因为:S= S+25     

                 即: V2 t=25+ V1 t+at2/2

                 由上面两式联立求解,带入数据得:

   a=2 m/s2  

所以货车的加速度应小于2 m/s2 ,小车才能追上货车

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网