题目内容
如图所示,长为L的长木板水平放置,在木板的A端放置一个质量为m的小物块。现缓慢地抬高A端,使木板以左端为轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,此时停止转动木板,小物块滑到底端的速度为v,则在整个过程中( )
A.支持力对小物块做功为0
B.支持力对小物块做功为mgLsinα
C.摩擦力对小物块做功为mgLsinα
D.滑动摩擦力对小物块做功为
-mgLsinα
![]()
【解析】选B、D。缓慢抬高A端过程中,静摩擦力始终跟运动方向垂直,不做功,支持力与重力做功的代数和为零,所以支持力做的功等于mgLsinα;下滑过程支持力跟运动方向始终垂直,不做功,由动能定理可得:mgLsinα+WFf=
mv2,解得WFf=
mv2-mgLsinα;综上所述,B、D正确。
【变式备选】如图所示,光滑斜面的顶端固定一弹簧,一物体向右滑行,并冲上固定在地面上的斜面。设物体在斜面最低点A的速度为v,压缩弹簧至C点时弹簧最短,C点距地面高度为h,则从A到C的过程中弹簧弹力做功是( )
A.mgh-
mv2 B.
mv2-mgh C.-mgh D.-(mgh+
mv2)
![]()
【解析】选A。由A到C的过程运用动能定理可得:
-mgh+W=0-
mv2,所以W=mgh-
mv2,故A正确。
练习册系列答案
相关题目