ÌâÄ¿ÄÚÈÝ
y=-2.2RµÄλÖã¬Ó«¹âÆÁÒÒÆ½ÐÐÓÚyÖá·ÅÖÃÔÚx=3.5RµÄλÖã®ÏÖÓÐÒ»ÊøÖÊÁ¿Îªm¡¢µçºÉÁ¿Îªq£¨q£¾0£©¡¢¶¯ÄÜΪE0µÄÁ£×Ó´Ó×ø±êΪ£¨-R£¬0£©µÄAµãÑØxÖáÕý·½ÏòÉäÈëÇøÓò¢ñ£¬×îÖÕ´òÔÚÓ«¹âÆÁ¼×ÉÏ£¬³öÏÖÁÁµãNµÄ×ø±êΪ£¨0.4R£¬-2.2R£©£®Èô³·È¥Ô²Íâ´Å³¡£¬Á£×ÓÒ²´òÔÚÓ«¹âÆÁ¼×ÉÏ£¬³öÏÖÁÁµãMµÄ×ø±êΪ£¨0£¬-2.2R£©£¬´Ëʱ£¬Èô½«Ó«¹âÆÁ¼×ÑØyÖḺ·½ÏòÆ½ÒÆ£¬·¢ÏÖÁÁµãµÄxÖá×ø±êʼÖÕ±£³Ö²»±ä£®²»¼ÆÁ£×ÓÖØÁ¦Ó°Ï죮
£¨1£©ÇóÔÚÇøÓò¢ñºÍ¢òÖÐÁ£×ÓÔ˶¯ËÙ¶Èv1¡¢v2µÄ´óС£»
£¨2£©ÇóÔÚÇøÓò¢ñºÍ¢òÖдŸÐӦǿ¶ÈB1¡¢B2µÄ´óСºÍ·½Ïò£»
£¨3£©ÈôÉÏÊöÁ½¸ö´Å³¡±£³Ö²»±ä£¬Ó«¹âÆÁÈÔÔÚ³õʼλÖ㬵«´ÓAµãÑØxÖáÕý·½ÏòÉäÈëÇøÓò¢ñµÄÁ£×ÓÊø¸ÄΪÖÊÁ¿Îªm¡¢µçºÉÁ¿Îª-q¡¢¶¯ÄÜΪ3E0µÄÁ£×Ó£¬ÇóÓ«¹âÆÁÉϳöÏÖÁÁµãµÄ×ø±ê£®
·ÖÎö£ºÓÉÓÚÂåÂ××ÈÁ¦¶ÔÁ£×Ó²»×ö¹¦£¬ÔòÔ˶¯µÄËÙ¶ÈÓÉÁ£×ӵ͝ÄÜÇóµÃ£®ÔÚûÓÐÔ²Íâ´Å³¡Ê±£¬Á£×Ó´ÓAµãÉäÈ룬Íê³É
Ô²»¡ºóÉä³ö£®Òò´Ë¿ÉÒÔ¸ù¾ÝÔ²Ðδų¡µÄ°ë¾¶À´Çó³öB1´Å³¡´óСÓë·½Ïò£®µ±Á£×ÓÑØyÖḺ·½ÏòÉäÈë´Å³¡B2ʱ£¬¸ù¾Ý´òµ½Ó«¹âÆÁ¼×ÉϵÄ×ø±ê£¬½áºÏ¼¸ºÎ¹ØÏµ£¬¿ÉÒÔËã³ö´Å³¡B2µÄ´óСÓë·½Ïò£®
µ±¸Ä±äµçºÉµÄµçÐÔ¼°³õ¶¯ÄÜʱ£¬ÓÉB1´Å³¡´óСÓë·½Ïò¿ÉÇó³öÁ£×ÓµÄÔ˶¯¹ìµÀ°ë¾¶£¬ÔÙÓÉB2´Å³¡´óСÓë·½Ïò¿ÉÇó³öÁ£×ÓÔڴ˵ĹìµÀ°ë¾¶£®´Ó¶øÓɼ¸ºÎ¹ØÏµ¿ÉÈ·¶¨Á£×Ó´òµ½Ó«¹âÆÁµÄ×ø±ê£®
| 1 |
| 4 |
µ±¸Ä±äµçºÉµÄµçÐÔ¼°³õ¶¯ÄÜʱ£¬ÓÉB1´Å³¡´óСÓë·½Ïò¿ÉÇó³öÁ£×ÓµÄÔ˶¯¹ìµÀ°ë¾¶£¬ÔÙÓÉB2´Å³¡´óСÓë·½Ïò¿ÉÇó³öÁ£×ÓÔڴ˵ĹìµÀ°ë¾¶£®´Ó¶øÓɼ¸ºÎ¹ØÏµ¿ÉÈ·¶¨Á£×Ó´òµ½Ó«¹âÆÁµÄ×ø±ê£®
½â´ð£º½â£º£¨1£©ÓÉÓÚÔڴų¡ÖÐÔ˶¯Ê±ÂåÂØ×ÈÁ¦²»×ö¹¦£¬ËùÒÔÔÚÇøÓò¢ñºÍ¢òÖÐÁ£×ÓÔ˶¯ËÙ¶È´óС¾ÍÊÇÔÚAµãÈëÉäʱ³õʼËÙ¶È´óСv£¬ÓÉE0=
mv2¿ÉµÃ
v1=v2=v=
£¨2£©Á£×ÓÔÚÇøÓò¢ñÖÐÔ˶¯ÁËËÄ·ÖÖ®Ò»Ô²Öܺ󣬴ÓCµãÑØyÖḺ·½Ïò½øÈëÇøÓò¢òµÄ´Å³¡£®Èçͼ1Ëùʾ£¬Ô²ÖÜÔ˶¯µÄÔ²ÐÄÊÇO1µã£¬°ë¾¶Îª

r1=R
ÓÉqv1B=m
£¬µÃB1=
=
·½Ïò´¹Ö±xoyÆ½ÃæÏòÍ⣮
Á£×Ó½øÈëÇøÓò¢òºó×ö°ë¾¶Îªr2µÄÔ²ÖÜÔ˶¯£¬ÓÉqv2B2=m
£¬
¿ÉµÃr2=
£¬
Ô²ÖÜÔ˶¯µÄÔ²ÐÄO2×ø±êΪ£¨r2£¬-R£©£¬Ô²ÖÜÔ˶¯¹ì¼£·½³ÌΪ
(x-r2)2+(y+R)2=
½«NµãµÄ×ø±ê£¨0.4R£¬-2.2R£©´úÈëÉÏʽ£¬¿ÉµÃ
r2=2R
ÇóµÃ£ºB2=
=
·½Ïò´¹Ö±xoyÆ½ÃæÏòÀ
£¨3£©Èçͼ2Ëùʾ£¬Á£×ÓÏÈÔÚÇøÓò¢ñÖÐ×öÔ²ÖÜÔ˶¯£®ÓÉ3E0=
mv¡ä2¿ÉÖª£¬
Ô˶¯ËÙ¶ÈΪ v¡ä=
=
v
¹ìµÀ°ë¾¶Îª r3=
=
=
R
ÓÉÔ²ÐÄO3µÄ×ø±ê£¨-R£¬
R£©¿ÉÖª£¬O3AÓëO3OµÄ¼Ð½ÇΪ30¡ã£®Í¨¹ý·ÖÎöÈçͼµÄ¼¸ºÎ¹ØÏµ£¬Á£×Ó´ÓDµã´©³öÇøÓò¢ñµÄËÙ¶È·½ÏòÓëxÖáÕý·½ÏòµÄ¼Ð½ÇΪ¦È=60¡ã
Á£×Ó½øÈëÇøÓò¢òºó×öÔ²ÖÜÔ˶¯µÄ°ë¾¶Îª
r4=
=2
=2
R
ÆäÔ²ÐÄO4µÄ×ø±êΪ£¨Rcos60¡ã+r4cos30¡ã£¬Rsin60¡ã-r4sin30¡ã£©£¬
¼´£¨
R£¬-
R£©£¬ËµÃ÷Ô²ÐÄO4Ç¡ºÃÔÚÓ«¹âÆÁÒÒÉÏ£®ËùÒÔ£¬ÁÁµã½«³öÏÖÔÚÓ«¹âÆÁÒÒÉϵÄPµã£¬
ÆäyÖá×ø±êΪy=-
R+r4=
R
ÆäxÖá×ø±êΪx=3.5R£®
| 1 |
| 2 |
v1=v2=v=
|
£¨2£©Á£×ÓÔÚÇøÓò¢ñÖÐÔ˶¯ÁËËÄ·ÖÖ®Ò»Ô²Öܺ󣬴ÓCµãÑØyÖḺ·½Ïò½øÈëÇøÓò¢òµÄ´Å³¡£®Èçͼ1Ëùʾ£¬Ô²ÖÜÔ˶¯µÄÔ²ÐÄÊÇO1µã£¬°ë¾¶Îª
r1=R
ÓÉqv1B=m
| ||
| r1 |
| mv1 |
| qr1 |
| ||
| qR |
·½Ïò´¹Ö±xoyÆ½ÃæÏòÍ⣮
Á£×Ó½øÈëÇøÓò¢òºó×ö°ë¾¶Îªr2µÄÔ²ÖÜÔ˶¯£¬ÓÉqv2B2=m
| ||
| r2 |
¿ÉµÃr2=
| mv2 |
| qB2 |
Ô²ÖÜÔ˶¯µÄÔ²ÐÄO2×ø±êΪ£¨r2£¬-R£©£¬Ô²ÖÜÔ˶¯¹ì¼£·½³ÌΪ
(x-r2)2+(y+R)2=
| r | 2 2 |
½«NµãµÄ×ø±ê£¨0.4R£¬-2.2R£©´úÈëÉÏʽ£¬¿ÉµÃ
r2=2R
ÇóµÃ£ºB2=
| mv2 |
| qr2 |
| ||
| 2qR |
·½Ïò´¹Ö±xoyÆ½ÃæÏòÀ
£¨3£©Èçͼ2Ëùʾ£¬Á£×ÓÏÈÔÚÇøÓò¢ñÖÐ×öÔ²ÖÜÔ˶¯£®ÓÉ3E0=
| 1 |
| 2 |
Ô˶¯ËÙ¶ÈΪ v¡ä=
|
| 3 |
¹ìµÀ°ë¾¶Îª r3=
| mv¡ä |
| qB1 |
| 3 |
| mv |
| qB1 |
| 3 |
ÓÉÔ²ÐÄO3µÄ×ø±ê£¨-R£¬
| 3 |
Á£×Ó½øÈëÇøÓò¢òºó×öÔ²ÖÜÔ˶¯µÄ°ë¾¶Îª
r4=
| mv¡ä |
| qB2 |
| 3 |
| mv |
| qB1 |
| 3 |
ÆäÔ²ÐÄO4µÄ×ø±êΪ£¨Rcos60¡ã+r4cos30¡ã£¬Rsin60¡ã-r4sin30¡ã£©£¬
¼´£¨
| 7 |
| 2 |
| ||
| 2 |
ÆäyÖá×ø±êΪy=-
| ||
| 2 |
3
| ||
| 2 |
ÆäxÖá×ø±êΪx=3.5R£®
µãÆÀ£º¸ù¾ÝÁ£×ÓµÄ×ø±ê£¬¶¨³öÔ²ÐÄ£¬²¢»³öÔ˶¯¹ìµÀ£¬Óɼ¸ºÎ¹ØÏµÀ´È·¶¨°ë¾¶£¬´Ó¶øÇó³ö´Å¸ÐӦǿ¶È´óС¼°Åж¨Æä·½Ïò£®ÖµµÃ×¢ÒâµÄÊÇ£º´Å³¡·½ÏòÏ෴ʱÁ£×ÓÔ˶¯Ô²»¡Ëù¶ÔÓ¦µÄÔ²ÐÄÔÚÒ»ÌõÖ±ÏßÉÏ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿