ÌâÄ¿ÄÚÈÝ
£¨2009?ÉØ¹Ø¶þÄ££©£¨±¾Ì⹩ѡѧ3-4µÄ¿¼Éú×ö£©
£¨1£©Ò»¸´É«¹âÖÐÖ»º¬ÓÐa¡¢bÁ½ÖÖµ¥É«¹â£¬ÔÚÕæ¿ÕÖÐa¹âµÄ²¨³¤´óÓÚb¹âµÄ²¨³¤

¢ÙÔÚÕæ¿ÕÖУ¬a¹âµÄËÙ¶È
¢ÚÈôÓô˸´É«¹âͨ¹ý°ëÔ²Ðβ£Á§×©ÇÒ¾Ô²ÐÄOÉäÏò¿ÕÆøÊ±£¬Èçͼ1ËùʾËĸö¹â·ͼÖпÉÄÜ·ûºÏʵ¼ÊÇé¿öµÄÊÇ
£¨2£©Ò»¼òгºá²¨ÑØxÖáÕý·½Ïò´«²¥£¬ÔÚt=0ʱ¿ÌµÄ²¨ÐÎÈçͼ2Ëùʾ£¬ÒÑÖª½éÖÊÖÐÖʵãPµÄÕñ¶¯ÖÜÆÚΪ2s£¬´ËʱPÖʵãËùÔÚµÄλÖÃ×Ý×ø±êΪ2cm£¬ºá×ø±êΪ0.5m£¬ÊÔÇó´Óͼʾʱ¿Ì¿ªÊ¼ÔÚÄÄЩʱ¿ÌÖʵãP»á³öÏÖÔÚ²¨·å£¿
£¨1£©Ò»¸´É«¹âÖÐÖ»º¬ÓÐa¡¢bÁ½ÖÖµ¥É«¹â£¬ÔÚÕæ¿ÕÖÐa¹âµÄ²¨³¤´óÓÚb¹âµÄ²¨³¤
¢ÙÔÚÕæ¿ÕÖУ¬a¹âµÄËÙ¶È
µÈÓÚ
µÈÓÚ
£¨Ìî¡°´óÓÚ¡±¡¢¡°µÈÓÚ¡±»ò¡°Ð¡ÓÚ¡±£©b¹âµÄËÙ¶È¢ÚÈôÓô˸´É«¹âͨ¹ý°ëÔ²Ðβ£Á§×©ÇÒ¾Ô²ÐÄOÉäÏò¿ÕÆøÊ±£¬Èçͼ1ËùʾËĸö¹â·ͼÖпÉÄÜ·ûºÏʵ¼ÊÇé¿öµÄÊÇ
BC
BC
£®£¨2£©Ò»¼òгºá²¨ÑØxÖáÕý·½Ïò´«²¥£¬ÔÚt=0ʱ¿ÌµÄ²¨ÐÎÈçͼ2Ëùʾ£¬ÒÑÖª½éÖÊÖÐÖʵãPµÄÕñ¶¯ÖÜÆÚΪ2s£¬´ËʱPÖʵãËùÔÚµÄλÖÃ×Ý×ø±êΪ2cm£¬ºá×ø±êΪ0.5m£¬ÊÔÇó´Óͼʾʱ¿Ì¿ªÊ¼ÔÚÄÄЩʱ¿ÌÖʵãP»á³öÏÖÔÚ²¨·å£¿
·ÖÎö£º£¨1£©¢ÙÔÚÕæ¿ÕÖÐËùÓÐÉ«¹âµÄËٶȶ¼ÏàµÈ£»¢ÚÔÚÕæ¿ÕÖÐa¹âµÄ²¨³¤´óÓÚb¹âµÄ²¨³¤£®´Ó¶øÈ·¶¨³ö²£Á§¶ÔÁ½ÖÖÉ«¹âÕÛÉäÂʵĴóС£®¹âÔÚ·Ö½çÃæÉϻᷢÉúÕÛÉäºÍ·´É䣬¸ù¾ÝÕÛÉäÂʵĴóСȷ¶¨a¡¢bÁ½ÖÖµ¥É«¹â£¬ÒÔ¼°×¢Òâµ±ÈëÉä½Ç´óÓÚµÈÓÚÁÙ½ç½Çʱ£¬»á·¢ÉúÈ«·´É䣬¸ù¾ÝÕÛÉäÂʵĴóС£¬ÅжÏËÏȻᷢÉúÈ«·´É䣮
£¨2£©ÓÉͼ¶Á³ö²¨³¤£¬Óɲ¨ËÙ¹«Ê½v=
Çó³ö²¨ËÙ£®ÌâÖдËʱ¿ÌÖʵãPÏòÏÂÕñ¶¯£¬¸ù¾Ý²¨ÐÎµÄÆ½ÒÆ·¨¿ÉÖª£¬PÏòÏÂÕñ¶¯µ½Æ½ºâλÖÃËùÐèµÄʱ¼äµÈÓÚ²¨ÑØxÖá·½Ïò´«²¥0.5 mµÄʱ¼ä£¬¼´¿É½øÒ»²½·ÖÎöµÚÒ»´Îµ½´ï²¨·åµÄʱ¿Ì£¬µÃµ½Ê±¿ÌµÄͨÏ
£¨2£©ÓÉͼ¶Á³ö²¨³¤£¬Óɲ¨ËÙ¹«Ê½v=
| ¦Ë |
| T |
½â´ð£º½â£º
£¨1£©¢ÙÔÚÕæ¿ÕÖÐËùÓÐÉ«¹âµÄËٶȶ¼ÏàµÈ£¬¹ÊÔÚÕæ¿ÕÖУ¬a¹âµÄËٶȵÈÓÚb¹âµÄËÙ¶È£»
¢ÚA¡¢BÓÉÌ⣬ÔÚÕæ¿ÕÖÐa¹âµÄ²¨³¤´óÓÚb¹âµÄ²¨³¤£¬Ôò²£Á§¶Ôb¹âµÄÕÛÉäÂÊ´óÓÚ¶Ôa¹âµÄÕÛÉäÂÊ£¬µ±¹âÔÚ·Ö½çÃæÉÏͬʱ·¢ÉúÕÛÉäºÍ·´Éäʱ£¬ÓÉÕÛÉ䶨ÂɵÃÖª£¬b¹âµÄÕÛÉä½Ç´óÓÚa¹âµÄÕÛÉä½Ç£¬B¿ÉÄÜ·ûºÏʵ¼Ê£®¹ÊBÕýÈ·£®
C¡¢Dµ±ÈëÉä½Ç´óÓÚµÈÓÚÁÙ½ç½Çʱ£¬»á·¢ÉúÈ«·´É䣬ÓÉÓÚb¹âµÄÕÛÉäÂÊ´ó£¬ÆäÁÙ½ç½ÇС£¬ÏÈ·¢ÉúÈ«·´É䣬¹ÊC¿ÉÄÜ·ûºÏʵ¼Ê£®¹ÊCÕýÈ·£®
¹ÊÑ¡BC
£¨2£©ÓÉͼ֪£¬¦Ë=6m
²¨µÄ´«²¥ËÙ¶ÈΪ£ºV=
=
m/s=3 m/s
ÓÉÌâÒâÖª´Ëʱ¿ÌÖʵãPÏòÏÂÕñ¶¯£¬ËùÒÔPÏòÏÂÕñ¶¯µ½Æ½ºâλÖÃËùÐèµÄʱ¼äµÈÓÚ²¨ÑØxÖá·½Ïò´«²¥0.5 mµÄʱ¼ät1=
=
s=
s
µÚÒ»´Îµ½´ï²¨·åµÄʱ¿ÌΪ£ºt2=
T+t1
ËùÒÔÖʵãP³öÏÖÔÚ²¨·åµÄʱ¿ÌÊÇ£ºt=kT+t2=
s£¨k=0£¬1£¬2£¬¡£©
¹Ê´ð°¸Îª£º
£¨1£©¢ÙµÈÓÚ ¢ÚBC
£¨2£©ÖʵãP³öÏÖÔÚ²¨·åµÄʱ¿ÌÊÇ£ºt=kT+t2=
s£¨k=0£¬1£¬2£¬¡£©
£¨1£©¢ÙÔÚÕæ¿ÕÖÐËùÓÐÉ«¹âµÄËٶȶ¼ÏàµÈ£¬¹ÊÔÚÕæ¿ÕÖУ¬a¹âµÄËٶȵÈÓÚb¹âµÄËÙ¶È£»
¢ÚA¡¢BÓÉÌ⣬ÔÚÕæ¿ÕÖÐa¹âµÄ²¨³¤´óÓÚb¹âµÄ²¨³¤£¬Ôò²£Á§¶Ôb¹âµÄÕÛÉäÂÊ´óÓÚ¶Ôa¹âµÄÕÛÉäÂÊ£¬µ±¹âÔÚ·Ö½çÃæÉÏͬʱ·¢ÉúÕÛÉäºÍ·´Éäʱ£¬ÓÉÕÛÉ䶨ÂɵÃÖª£¬b¹âµÄÕÛÉä½Ç´óÓÚa¹âµÄÕÛÉä½Ç£¬B¿ÉÄÜ·ûºÏʵ¼Ê£®¹ÊBÕýÈ·£®
C¡¢Dµ±ÈëÉä½Ç´óÓÚµÈÓÚÁÙ½ç½Çʱ£¬»á·¢ÉúÈ«·´É䣬ÓÉÓÚb¹âµÄÕÛÉäÂÊ´ó£¬ÆäÁÙ½ç½ÇС£¬ÏÈ·¢ÉúÈ«·´É䣬¹ÊC¿ÉÄÜ·ûºÏʵ¼Ê£®¹ÊCÕýÈ·£®
¹ÊÑ¡BC
£¨2£©ÓÉͼ֪£¬¦Ë=6m
²¨µÄ´«²¥ËÙ¶ÈΪ£ºV=
| ¦Ë |
| T |
| 6 |
| 2 |
ÓÉÌâÒâÖª´Ëʱ¿ÌÖʵãPÏòÏÂÕñ¶¯£¬ËùÒÔPÏòÏÂÕñ¶¯µ½Æ½ºâλÖÃËùÐèµÄʱ¼äµÈÓÚ²¨ÑØxÖá·½Ïò´«²¥0.5 mµÄʱ¼ät1=
| x |
| V |
| 0.5 |
| 3 |
| 1 |
| 6 |
µÚÒ»´Îµ½´ï²¨·åµÄʱ¿ÌΪ£ºt2=
| 3 |
| 4 |
ËùÒÔÖʵãP³öÏÖÔÚ²¨·åµÄʱ¿ÌÊÇ£ºt=kT+t2=
| 6k+5 |
| 3 |
¹Ê´ð°¸Îª£º
£¨1£©¢ÙµÈÓÚ ¢ÚBC
£¨2£©ÖʵãP³öÏÖÔÚ²¨·åµÄʱ¿ÌÊÇ£ºt=kT+t2=
| 6k+5 |
| 3 |
µãÆÀ£ºµÚ1Ìâ¿É½«Á½ÖÖÉ«¹âÓëºì¹â¡¢×ϹâÀà±È£¬¼´¿ÉµÃµ½ÕÛÉäÂʹØÏµ£¬ÇáËÉ·ÖÎö¿ÉÄÜ·¢ÉúµÄ¹âÏÖÏó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿