题目内容
滑雪运动中当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板与雪地间形成一个暂时的“气垫”,从而大大减小雪地对滑雪板的摩擦.然而当滑雪板相对雪地速度较小时,与雪地接触时间超过某一值就会陷下去,使得它们间的摩擦力增大.假设滑雪者的速度超过4m/s时,滑雪板与雪地间的动摩擦因数就会由μ1=0.25变为μ2=0.125.一滑雪者从倾角θ=37°的坡顶A处由静止开始自由下滑,滑至坡底B(B处为一光滑小圆弧)后又滑上一段水平雪地,最后停在C处,如图所示,不计空气阻力,坡长L=26m,取g=10m/s2,sin37°=0.6,cos37°=0.8,求:(1)滑雪者从静止开始到动摩擦因数发生变化所经历的时间;
(2)滑雪者到达B处的速度;
(3)滑雪者在水平雪地上运动的最大距离.
【答案】分析:(1)根据牛顿第二定律求出滑雪者在斜坡上从静止开始加速至速度v1=4m/s期间的加速度,再根据速度时间公式求出运动的时间.
(2)再根据牛顿第二定律求出速度大于4m/s时的加速度,球心速度为4m/s之前的位移,从而得出加速度变化后的位移,根据匀变速直线运动的速度位移公式求出滑雪者到达B处的速度.
(3)根据动能定理分别求出在水平面上速度减为4m/s之前的位移和速度由4m/s减小到零的位移,两个位移之和为滑行的最大距离.
解答:解:(1)设滑雪者质量为m,滑雪者在斜坡上从静止开始加速至速度v1=4m/s期间,由牛顿第二定律有:mgsin37°-μ1mgcos37°=ma1
解得:
故由静止开始到动摩擦因数发生变化所经历的时间:
(2)则根据牛顿定律和运动学公式有:
mgsin37°-μ2mgcos37°=ma2
x2=L-x1

代入数据解得:vB=16m/s
(3)设滑雪者速度由vB=16m/s减速到v1=4m/s期间运动的位移为x3,速度由v1=4m/s减速到零期间运动的位移为x4,则由动能定理有:

所以滑雪者在水平雪地上运动的最大距离为:x=x3+x4=99.2m.
答:(1)滑雪者从静止开始到动摩擦因数发生变化所经历的时间为1s.
(2)滑雪者到达B处的速度为16m/s.
(3)滑雪者在水平雪地上运动的最大距离为99.2m.
点评:本题综合运用了牛顿第二定律、动能定理等规律,关键理清滑雪者的运动过程,正确地受力分析,运用牛顿定律或动能定理解题.
(2)再根据牛顿第二定律求出速度大于4m/s时的加速度,球心速度为4m/s之前的位移,从而得出加速度变化后的位移,根据匀变速直线运动的速度位移公式求出滑雪者到达B处的速度.
(3)根据动能定理分别求出在水平面上速度减为4m/s之前的位移和速度由4m/s减小到零的位移,两个位移之和为滑行的最大距离.
解答:解:(1)设滑雪者质量为m,滑雪者在斜坡上从静止开始加速至速度v1=4m/s期间,由牛顿第二定律有:mgsin37°-μ1mgcos37°=ma1
解得:
故由静止开始到动摩擦因数发生变化所经历的时间:
(2)则根据牛顿定律和运动学公式有:
mgsin37°-μ2mgcos37°=ma2
x2=L-x1
代入数据解得:vB=16m/s
(3)设滑雪者速度由vB=16m/s减速到v1=4m/s期间运动的位移为x3,速度由v1=4m/s减速到零期间运动的位移为x4,则由动能定理有:
所以滑雪者在水平雪地上运动的最大距离为:x=x3+x4=99.2m.
答:(1)滑雪者从静止开始到动摩擦因数发生变化所经历的时间为1s.
(2)滑雪者到达B处的速度为16m/s.
(3)滑雪者在水平雪地上运动的最大距离为99.2m.
点评:本题综合运用了牛顿第二定律、动能定理等规律,关键理清滑雪者的运动过程,正确地受力分析,运用牛顿定律或动能定理解题.
练习册系列答案
相关题目