ÌâÄ¿ÄÚÈÝ
£¨1£©´øµçÁ£×ÓµÚÒ»´Î´©Ô½¸ôÀë²ã½øÈë´Å³¡×öÔ²ÖÜÔ˶¯µÄ°ë¾¶ R 1£»
£¨2£©´øµçÁ£×ÓµÚ¶þ´Î´©Ô½¸ôÀë²ã½øÈëµç³¡´ïµ½×î¸ßµãµÄ×Ý×ø±ê y1£»
£¨3£©´Ó¿ªÊ¼µ½µÚÈý´Î´©Ô½¸ôÀë²ãËùÓõÄ×Üʱ¼ä t£»
£¨4£©Èô´øµçÁ£×ÓµÚËĴδ©Ô½¸ôÀë²ãʱ¸ÕºÃµ½´ï×ø±êÔµã O£¬Ôò P µãºá×ø±ê x0Óë×Ý×ø±ê y0Ó¦Âú×ãµÄ¹ØÏµ£®
·ÖÎö£º£¨1£©¸ù¾Ý¶¯Äܶ¨ÀíÇó³öÁ£×ÓµÚÒ»´Îµ½´ï¸ôÀë²ãʱµÄËÙ¶È£¬´Ó¶øµÃ³öµÚÒ»´Î´©Ô½¸ôÀë²ãµÄËÙ¶È£¬¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦Çó³ö´øµçÁ£×ÓµÚÒ»´Î´©Ô½¸ôÀë²ã½øÈë´Å³¡×öÔ²ÖÜÔ˶¯µÄ°ë¾¶£®
£¨2£©´©Ô½ºóµÄËÙ¶ÈÊÇÿ´Î´©Ô½Ç°ËÙ¶ÈµÄ k ±¶£®µÃÖªµÚ¶þ´Î´©Ô½¸ôÀë²ãµÄËÙ¶È£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó³ö´øµçÁ£×ÓµÚ¶þ´Î´©Ô½¸ôÀë²ã½øÈëµç³¡´ïµ½×î¸ßµãµÄ×Ý×ø±ê£®
£¨3£©´Ó¿ªÊ¼µ½µÚÈý´Î´©Ô½¸ôÀë²ã¹ý³ÌÖУ¬Ôڴų¡ÖÐÔ˶¯°ë¸öÔ²ÖÜ£¬¸ù¾ÝÖÜÆÚ¹«Ê½Çó³öÔڴų¡ÖÐÔ˶¯µÄʱ¼ä£¬Ôڵ糡ÖÐ×öÔȱäËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÎ»ÒÆÊ±¼ä¹«Ê½Çó³öÔڵ糡ÖÐÔ˶¯µÄʱ¼ä£¬´Ó¶øÇó³ö×Üʱ¼ä£®
£¨4£©·Ö±ðÇó³öµÚÒ»´Î´©Ô½¸ôÀë²ãºÍµÚÈý´Î´©¹ý¸ôÀë²ãºóÔڴų¡ÖÐÔ˶¯µÄ¹ìµÀ°ë¾¶£¬×¥×¡x0=2R1+2R2Çó³ö P µãºá×ø±ê x0Óë×Ý×ø±ê y0Ó¦Âú×ãµÄ¹ØÏµ£®
£¨2£©´©Ô½ºóµÄËÙ¶ÈÊÇÿ´Î´©Ô½Ç°ËÙ¶ÈµÄ k ±¶£®µÃÖªµÚ¶þ´Î´©Ô½¸ôÀë²ãµÄËÙ¶È£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó³ö´øµçÁ£×ÓµÚ¶þ´Î´©Ô½¸ôÀë²ã½øÈëµç³¡´ïµ½×î¸ßµãµÄ×Ý×ø±ê£®
£¨3£©´Ó¿ªÊ¼µ½µÚÈý´Î´©Ô½¸ôÀë²ã¹ý³ÌÖУ¬Ôڴų¡ÖÐÔ˶¯°ë¸öÔ²ÖÜ£¬¸ù¾ÝÖÜÆÚ¹«Ê½Çó³öÔڴų¡ÖÐÔ˶¯µÄʱ¼ä£¬Ôڵ糡ÖÐ×öÔȱäËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÎ»ÒÆÊ±¼ä¹«Ê½Çó³öÔڵ糡ÖÐÔ˶¯µÄʱ¼ä£¬´Ó¶øÇó³ö×Üʱ¼ä£®
£¨4£©·Ö±ðÇó³öµÚÒ»´Î´©Ô½¸ôÀë²ãºÍµÚÈý´Î´©¹ý¸ôÀë²ãºóÔڴų¡ÖÐÔ˶¯µÄ¹ìµÀ°ë¾¶£¬×¥×¡x0=2R1+2R2Çó³ö P µãºá×ø±ê x0Óë×Ý×ø±ê y0Ó¦Âú×ãµÄ¹ØÏµ£®
½â´ð£º½â£º£¨1£©µÚÒ»´Îµ½´ï¸ôÀë²ãʱËÙ¶ÈΪv0
qEyo=
mvo2£¬v0=
µÚÒ»´Î´©Ô½¸ôÀë²ãºóËÙ¶ÈΪv1=k
ÓÉqv1B=m
£¬µÃµÚÒ»´ÎÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯°ë¾¶Îª R1=
=
£¨2£©µÚ¶þ´Î´©Ô½¸ôÀë²ãºóËÙ¶ÈΪv2=k2
-qEy1=0-
mv22£¬µÃy1=k4y0
£¨3£©ÓÉyo=
t02£¬µÃµÚÒ»´Îµ½´ï¸ôÀë²ãµÄʱ¼äΪ t0=
Ô²ÖÜÔ˶¯µÄÖÜÆÚT=
µÚÒ»´ÎÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯Ê±¼äΪ t1=
=
µÚ¶þ´Î´©Ô½¸ôÀë²ãºóµ½´ï×î¸ßµãʱ¼äΪ t2=
=k 2
´Ó¿ªÊ¼µ½µÚÈý´Î´©Ô½¸ôÀë²ãËùÓÃ×Üʱ¼ä
t=t0+t1+2t2=£¨1+2 k2£©
+
£¨4£©µÚÈý´Î´©Ô½¸ôÀë²ãºóµÄËÙ¶ÈΪv 3=k 3
µÚ¶þ´ÎÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯°ë¾¶ÎªR2=
x0=2R1+2R2=£¨ 2 k+2 k 3£©
´ð£º£¨1£©´øµçÁ£×ÓµÚÒ»´Î´©Ô½¸ôÀë²ã½øÈë´Å³¡×öÔ²ÖÜÔ˶¯µÄ°ë¾¶Îª
£®
£¨2£©´øµçÁ£×ÓµÚ¶þ´Î´©Ô½¸ôÀë²ã½øÈëµç³¡´ïµ½×î¸ßµãµÄ×Ý×ø±êy1=k4y0
£¨3£©´Ó¿ªÊ¼µ½µÚÈý´Î´©Ô½¸ôÀë²ãËùÓõÄ×Üʱ¼äΪ£¨1+2 k2£©
+
£®
£¨4£©P µãºá×ø±ê x0Óë×Ý×ø±ê y0Ó¦Âú×ãµÄ¹ØÏµÎª£ºx0=£¨ 2 k+2 k 3£©
£®
qEyo=
| 1 |
| 2 |
|
µÚÒ»´Î´©Ô½¸ôÀë²ãºóËÙ¶ÈΪv1=k
|
ÓÉqv1B=m
| v12 |
| R1 |
| mv1 |
| qB |
|
£¨2£©µÚ¶þ´Î´©Ô½¸ôÀë²ãºóËÙ¶ÈΪv2=k2
|
-qEy1=0-
| 1 |
| 2 |
£¨3£©ÓÉyo=
| 1 |
| 2 |
| qE |
| m |
|
Ô²ÖÜÔ˶¯µÄÖÜÆÚT=
| 2¦Ðm |
| qB |
µÚÒ»´ÎÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯Ê±¼äΪ t1=
| T |
| 2 |
| ¦Ðm |
| qB |
µÚ¶þ´Î´©Ô½¸ôÀë²ãºóµ½´ï×î¸ßµãʱ¼äΪ t2=
| v2 |
| a |
|
´Ó¿ªÊ¼µ½µÚÈý´Î´©Ô½¸ôÀë²ãËùÓÃ×Üʱ¼ä
t=t0+t1+2t2=£¨1+2 k2£©
|
| ¦Ðm |
| qB |
£¨4£©µÚÈý´Î´©Ô½¸ôÀë²ãºóµÄËÙ¶ÈΪv 3=k 3
|
µÚ¶þ´ÎÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯°ë¾¶ÎªR2=
|
x0=2R1+2R2=£¨ 2 k+2 k 3£©
|
´ð£º£¨1£©´øµçÁ£×ÓµÚÒ»´Î´©Ô½¸ôÀë²ã½øÈë´Å³¡×öÔ²ÖÜÔ˶¯µÄ°ë¾¶Îª
|
£¨2£©´øµçÁ£×ÓµÚ¶þ´Î´©Ô½¸ôÀë²ã½øÈëµç³¡´ïµ½×î¸ßµãµÄ×Ý×ø±êy1=k4y0
£¨3£©´Ó¿ªÊ¼µ½µÚÈý´Î´©Ô½¸ôÀë²ãËùÓõÄ×Üʱ¼äΪ£¨1+2 k2£©
|
| ¦Ðm |
| qB |
£¨4£©P µãºá×ø±ê x0Óë×Ý×ø±ê y0Ó¦Âú×ãµÄ¹ØÏµÎª£ºx0=£¨ 2 k+2 k 3£©
|
µãÆÀ£º±¾Ì⿼²é´øµçÁ£×ÓÔڵ糡ºÍ´Å³¡ÖеÄÔ˶¯£¬¹Ø¼üÖªµÀÁ£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬Ôڵ糡ÖÐ×öÔȱäËÙÖ±ÏßÔ˶¯£¬ÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂɽáºÏÔ˶¯Ñ§¹«Ê½½øÐÐÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿