题目内容
1.下列说法正确的是( )| A. | 液体中悬浮的微粒越大,布朗运动越显著 | |
| B. | 当分子力表现为斥力时,分子势能随分子间距离的增大而减小 | |
| C. | 第二类永动机不可能制成,因为它违反能量守恒定律 | |
| D. | 一定质量的理想气体,当它的压强,体积都增大时,其内能一定增加 |
分析 固体小颗粒越小,布朗运动越明显;
第二类永动机违背了热力学第二定律;并不违背热力学第一定律;
由理想气体状态方程可知,温度的变化;根据理想气体的性质可明确内能的变化;
解答 解:A、液体中悬浮的固体小颗粒越小,物体受力越不平衡,则布朗运动越显著;故A错误;
B、当分子力表现为斥力时,分子势能随分子间距离的增大而减小,故B正确;
C、第二类永动机不可能制成,是因它违反了热力学第二定律;故C错误;
D、当压强、体积都增大时,由状态方程可得,温度一定增大;而理想气体不计分子势能,故温度升高时,物体的内能一定增加;故D正确;
故选:BD.
点评 本题考查布朗运动、热力学第二定律、理想气体及液体表面张力的形成原因等,要注意理想气体的分子间距离较大,故分子势能忽略不计.
练习册系列答案
相关题目
11.
如图所示的电路中,A、B两灯均正常发光,R为一滑动变阻器,P为滑动片,若将滑片P滑动时,发现A灯变暗,则下列判断正确的是( )
| A. | 路端电压变小 | B. | 滑动片P应向上移,且B灯变亮 | ||
| C. | 滑动片P应向下移,且B灯变暗 | D. | 电源内电路消耗功率一定逐渐增大 |
16.
如图所示,平行光滑金属导轨倾斜放置,与水平面间的夹角为θ,间距为L,导轨上端与一电容为C的电容器相连,匀强磁场磁感应强度为B,方向垂直于导轨平面向上,质量为m的导体棒垂直放在导轨上并由静止释放,导轨足够长,则导体棒( )
| A. | 做变加速直线运动 | |
| B. | 先变加速直线运动,再做匀速运动 | |
| C. | 做匀加速直线运动且加速度大小为gsinθ | |
| D. | 做匀加速直线运动且加速度大小为$\frac{mgsinθ}{m+C{B}^{2}{L}^{2}}$ |
6.物体做简谐振动,通过A点的速度为v,经1s第一次以同样大小方向的速度v通过B点,再经1s紧接着又通过B点,已知物体在2s内所走的总路程为12cm,则该物体做简谐振动的周期T是4s,振幅A是6cm.
13.在静电场中,将一带负电的小球(可视为点电荷)从A点移到B点,小球克服电场力做功3.2×10-6J,则( )
| A. | 电场强度的方向一定是A点指向B点 | B. | 电场中A点的电势一定比B点高 | ||
| C. | 小球在A点的电势能一定比在B点小 | D. | 小球在A点的动能一定比在B点大 |
10.假设某试验通讯卫星正在地球赤道平面内的圆周轨道上运行,其离地球表面高度为北斗同步卫星离地球表面高度的三分之二,且运行方向与地球自转方向一致.则( )
| A. | 试验卫星运行的加速度小于地球表面的重力加速度 | |
| B. | 试验卫星运行的速度小于北斗同步卫星的运行速度 | |
| C. | 站在地球赤道上的人观察到试验卫星的位置始终不变 | |
| D. | 站在地球赤道上的人测得试验卫星和北斗卫星发射的光信号的传播速度不同 |