ÌâÄ¿ÄÚÈÝ
¡°Ì½¾¿¼ÓËÙ¶ÈÓëÎïÌåÖÊÁ¿¡¢ÎïÌåÊÜÁ¦¹ØÏµ¡±µÄʵÑé×°ÖÃÈçͼËùʾ£®
£¨1£©ÔÚʵÑéÖУ¬Ð¡³µËùÊܵÄĦ²ÁÁ¦ÊÇÔì³ÉϵͳÎó²îµÄÒ»¸öÖØÒªÒòËØ£¬¼õСÕâÖÖÎó²îµÄ·½·¨ÊÇÆ½ºâĦ²ÁÁ¦£®Æ½ºâĦ²ÁÁ¦µÄ¾ßÌå²Ù×÷ÊÇ£ºÔÚ³¤Ä¾°åµÄÒ»¶ËµæÉÏСľ¿é£¬·´¸´µ÷½Ú³¤Ä¾°åÓëË®Æ½Ãæ¼äµÄÇã½ÇµÄ´óС£¬Ö±µ½
£¨2£©ÊµÑéÖУ¬ËùÓý»Á÷µçµÄƵÂÊΪf£¬ÔÚËùѡֽ´øÉÏȡijµãΪ¡°0¡±¼ÆÊýµã£¬È»ºóÿ3¸öµãȡһ¸ö¼ÆÊýµã£¬ËùÓвâÁ¿Êý¾Ý¼°Æä±ê¼Ç·ûºÅÈçͼËùʾ£®£¨²âÁ¿Êý¾ÝµÄµ¥Î»¾ùΪ¹ú¼Êµ¥Î»£©ÔòС³µÔË
¶¯¼ÓËٶȵıí´ïʽa=
£®

£¨1£©ÔÚʵÑéÖУ¬Ð¡³µËùÊܵÄĦ²ÁÁ¦ÊÇÔì³ÉϵͳÎó²îµÄÒ»¸öÖØÒªÒòËØ£¬¼õСÕâÖÖÎó²îµÄ·½·¨ÊÇÆ½ºâĦ²ÁÁ¦£®Æ½ºâĦ²ÁÁ¦µÄ¾ßÌå²Ù×÷ÊÇ£ºÔÚ³¤Ä¾°åµÄÒ»¶ËµæÉÏСľ¿é£¬·´¸´µ÷½Ú³¤Ä¾°åÓëË®Æ½Ãæ¼äµÄÇã½ÇµÄ´óС£¬Ö±µ½
ÇáÍÆÐ¡³µ£¬ÊÇС³µÔÚ²»¹ÒɳͰµÄÇé¿öÏ£¬ÍÏ×ÅÖ½´ø×öÔÈËÙÖ±ÏßÔ˶¯
ÇáÍÆÐ¡³µ£¬ÊÇС³µÔÚ²»¹ÒɳͰµÄÇé¿öÏ£¬ÍÏ×ÅÖ½´ø×öÔÈËÙÖ±ÏßÔ˶¯
£®£¨2£©ÊµÑéÖУ¬ËùÓý»Á÷µçµÄƵÂÊΪf£¬ÔÚËùѡֽ´øÉÏȡijµãΪ¡°0¡±¼ÆÊýµã£¬È»ºóÿ3¸öµãȡһ¸ö¼ÆÊýµã£¬ËùÓвâÁ¿Êý¾Ý¼°Æä±ê¼Ç·ûºÅÈçͼËùʾ£®£¨²âÁ¿Êý¾ÝµÄµ¥Î»¾ùΪ¹ú¼Êµ¥Î»£©ÔòС³µÔË
¶¯¼ÓËٶȵıí´ïʽa=
| f2(x4-2x2) |
| 16 |
| f2(x4-2x2) |
| 16 |
·ÖÎö£º£¨1£©È·¶¨ÊÇ·ñƽºâµ½Ä¦²ÁÁ¦µÄÒÀ¾Ý¾ÍÊÇÇáÍÆÐ¡³µ£¬ÊÇС³µÍÏ×ÅÖ½´ø×öÔÈËÙÖ±ÏßÔ˶¯
£¨2£©Ã¿3¸öµãȡһ¸ö¼ÆÊýµã£¬Á½¼ÆÊýµãʱ¼ä¼ä¸ôΪT=0.04s£¬ÀûÓÃÖð²î·¨¿ÉÇó³ö¼ÓËÙ¶È£®
£¨2£©Ã¿3¸öµãȡһ¸ö¼ÆÊýµã£¬Á½¼ÆÊýµãʱ¼ä¼ä¸ôΪT=0.04s£¬ÀûÓÃÖð²î·¨¿ÉÇó³ö¼ÓËÙ¶È£®
½â´ð£º½â£º£¨1£©½«²»´ø»¬Âֵľ°åÒ»¶ËÊʵ±µæ¸ß£¬ÔÚ²»¹Ò¹³ÂëµÄÇé¿öÏÂʹС³µÇ¡ºÃ×öÔÈËÙÔ˶¯£¬ÒÔʹС³µµÄÖØÁ¦ÑØÐ±Ãæ·ÖÁ¦ºÍĦ²ÁÁ¦µÖÏû£¬ÄÇôС³µµÄºÏÁ¦¾ÍÊÇÉþ×ÓµÄÀÁ¦£®
¹Ê´ð°¸Îª£ºÇáÍÆÐ¡³µ£¬ÊÇС³µÔÚ²»¹ÒɳͰµÄÇé¿öÏ£¬ÍÏ×ÅÖ½´ø×öÔÈËÙÖ±ÏßÔ˶¯
£¨2£©¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ¡÷x=aT2µÃ£º
(x4-x3)-(x2-x1)=2a1T2 ¢Ù
(x3-x2)-x1=2a2T2 ¢Ú
a=
¢Û
¢Ù¢Ú¢Û´úÈëÊý¾ÝÁªÁ¢ÇóµÃ£ºa=
=
=
¹Ê´ð°¸Îª£º
£®
¹Ê´ð°¸Îª£ºÇáÍÆÐ¡³µ£¬ÊÇС³µÔÚ²»¹ÒɳͰµÄÇé¿öÏ£¬ÍÏ×ÅÖ½´ø×öÔÈËÙÖ±ÏßÔ˶¯
£¨2£©¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ¡÷x=aT2µÃ£º
(x4-x3)-(x2-x1)=2a1T2 ¢Ù
(x3-x2)-x1=2a2T2 ¢Ú
a=
| a1+a2 |
| 2 |
¢Ù¢Ú¢Û´úÈëÊý¾ÝÁªÁ¢ÇóµÃ£ºa=
| x4-2x2 |
| 4T2 |
| x4-2x2 | ||
4¡Á(2¡Á
|
| f2(x4-2x2) |
| 16 |
¹Ê´ð°¸Îª£º
| f2(x4-2x2) |
| 16 |
µãÆÀ£ºÊµÑéÎÊÌâÐèÒª½áºÏÎïÀí¹æÂÉÈ¥½â¾ö£®ÊµÑéÖеĵÚ1Ì⿼²éµÄÊÇÁ¦Ñ§ÎÊÌ⣬°Ñ³¤Ä¾°åµÄÒ»¶ËµæµÃ¹ý¸ß£¬Ê¹µÃÇã½ÇÆ«´ó£¬»áµ¼ÖÂÖØÁ¦ÑØÐ±ÃæÏòÏ ´ó£¬Ä¦ ¼õСµÈÏÖÏó£¬ÕâЩÎÒÃǶ¼Òª´Óѧ¹ýµÄÁ¦Ñ§ÖªÊ¶Öнâ¾ö£®
Ö½´øµÄ´¦ÀíÊÇÔËÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄÁ½¸öÍÆÂÛÈ¥Íê³ÉµÄ£®
Ö½´øµÄ´¦ÀíÊÇÔËÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄÁ½¸öÍÆÂÛÈ¥Íê³ÉµÄ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿