ÌâÄ¿ÄÚÈÝ
Èçͼ¼×Ëùʾ£¬Õæ¿ÕÇøÓòÄÚÓÐÒ»Á£×ÓÔ´A£¬ÄÜÿ¸ô
µÄʱ¼ä¼ä¸ô¶¨Ê±µØÑØAO·½ÏòÏòÍâ·¢³öÒ»¸öÁ£×Ó£®ÐéÏßÓÒ²àΪһÓÐÀíÏë±ß½çµÄÏ໥Õý½»µÄÔÈÇ¿µç³¡ºÍÔÈÇ¿´Å³¡ÇøÓò£¬ÀëÐéÏß¾àÀëΪLµÄλÖô¦ÓÐÒ»Ó«¹âÆÁ£¬Á£×Ó´òµ½Ó«¹âÆÁÉϽ«Ê¹Ó«¹âÆÁÉϳöÏÖÒ»¸öÁÁµã£®ÐéÏߺÍÓ«¹âÆÁÏ໥ƽÐУ¬¶øAOÓëÓ«¹âÆÁÏ໥´¹Ö±£®Èç¹ûijʱ¿ÌÁ£×ÓÔ˶¯µ½ÐéÏßλÖÿªÊ¼¼ÆÊ±£¨¼ÇΪt=0£©£¬¼ÓÉÏÈçͼÒÒËùʾÖÜÆÚÐԱ仯µÄµç¡¢´Å³¡£¬³¡Ç¿´óС¹ØÏµÎª
=
B£¨ÆäÖÐ
ΪÁ£×Óµ½´ïÐéÏßλÖÃʱµÄËÙ¶È´óС£©£¬·¢ÏÖt=
µÈʱ¿Ìµ½´ïÐéÏßλÖõÄÁ£×ÓÔÚt=2Tʱ¿Ìµ½´ïÓ«¹âÆÁÉϵÄOµã£»ÔÚt=
ʱ¿Ìµ½´ïÐéÏßλÖõÄÁ£×Ó´òµ½Ó«¹âÆÁÉϵÄPµã£¬ÇÒOPÖ®¼äµÄ¾àÀëΪ
£¬ÊÔ¸ù¾ÝÒÔÉÏÌõ¼þÈ·¶¨£¬Ó«¹âÆÁÉÏÔÚÄÄЩʱ¿Ì£¬ÔÚʲôλÖÃÓÐÁ£×Óµ½´ï£¿

| T |
| 2 |
| E | 0 |
| v | 0 |
| v | 0 |
| 3T |
| 2 |
| T |
| 2 |
| L |
| 2 |
ÓÉÓÚt=
ʱ¿Ìµ½´ïÐéÏßµÄÁ£×ÓÔÚ=2Tʱ¿Ìµ½´ïÓ«¹âÆÁÉϵÄOµã£¬¶øÔÚt=
¡«t=2TÆÚ¼äµç³¡ºÍ´Å³¡¶¼ÎªÁ㣬Á£×ÓÑØÖ±ÏßÔ˶¯µ½Oµã£¬ËµÃ÷Á£×ÓµÄÖØÁ¦²»¼Æ£¬¹Ê£º
£¨1£©t=0ʱ¿Ì½øÈëµÄÁ£×ÓÊܵ½µÄµç³¡Á¦ºÍÂåÂ××ÈÁ¦Æ½ºâ£¬¹Ê×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔÚt=
ʱ¿Ìµ½´ïOµã£®
£¨2£©t=
ʱ¿Ì½øÈëµÄÁ£×ÓÖ»Êܵ糡Á¦×÷Óã¬×öÀàÆ½Å×Ô˶¯£¬t=Tʱ¿Ìµ½´ïPµã£¬OP=
£®
£¨3£©t=Tʱ¿Ì½øÈëµÄÁ£×ÓÖ»ÊÜÂåÂ××ÈÁ¦×÷Óã¬ÔòµÃ
x=v0?
=L
µÃ
=
»òv0T=2L
ÓÉy=
?
?(
)2=
µÃ
=
ÓÖÓÉqv0B=m
£¬ÁªÁ¢µÃR=
=L
Á£×ÓÔڴų¡ÖÐÔ˶¯µÄÖÜÆÚΪ T0=
=¦ÐT
Éè¾¹ý
ʱ¼ä¼´
ʱ¿ÌÁ£×ÓÔ˶¯µ½Fµã£¬Éè´Ë¹ý³ÌÖÐÁ£×Óת¹ýµÄÔ²ÐĽÇΪ¦È£¬Ôò
=
£¬ÔòµÃ¦È=1rad
ÒÔºóÁ£×Ó²»ÊÜÁ¦×öÔÈËÙÖ±ÏßÔ˶¯µÄ´òµ½Qµã£¬ÓÉQOµã¼äµÄ¾àÀëΪ
yQO=£¨L-Lcos¦È£©+£¨L-Lsin¦È£©tan¦È=£¨L-Lcos1£©+£©+£¨L-Lsin1£©tan1£»
£¨4£©t=
ʱ¿Ìµ½´ïÐéÏßλÖõÄÁ£×Ó×öÔÈËÙÖ±ÏßÔ˶¯ÔÚt=2Tʱ¿Ìµ½´ïÓ«¹âÆÁÉϵÄOµã£»
£¨5£©ÒÔºóÖØ¸´£¬¼´£ºt=2kT£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½ÐéÏßλÖõÄÁ£×Ó£¬ÔÚt=£¨2k+
£©T£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½´ïOµã£»
t=£¨2k+
£©T£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½ÐéÏßλÖõÄÁ£×Ó£¬ÔÚt=£¨2k+1£©T£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½´ïPµã£»
t=£¨2k+1£©T£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½ÐéÏßλÖõÄÁ£×Ó£¬ÔÚt=£¨2k+1£©T+
+
£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½´ïQµã£»
t=£¨2k+
£©T£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½ÐéÏßλÖõÄÁ£×Ó£¬ÔÚt=£¨2k+2£©T£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½´ïOµã£®
´ð£º
t=2kT£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½ÐéÏßλÖõÄÁ£×Ó£¬ÔÚt=£¨2k+
£©T£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½´ïOµã£»
t=£¨2k+
£©T£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½ÐéÏßλÖõÄÁ£×Ó£¬ÔÚt=£¨2k+1£©T£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½´ïPµã£»
t=£¨2k+1£©T£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½ÐéÏßλÖõÄÁ£×Ó£¬ÔÚt=£¨2k+1£©T+
+
£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½´ïQµã£»
t=£¨2k+
£©T£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½ÐéÏßλÖõÄÁ£×Ó£¬ÔÚt=£¨2k+2£©T£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½´ïOµã£®
| 3T |
| 2 |
| 3T |
| 2 |
£¨1£©t=0ʱ¿Ì½øÈëµÄÁ£×ÓÊܵ½µÄµç³¡Á¦ºÍÂåÂ××ÈÁ¦Æ½ºâ£¬¹Ê×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔÚt=
| T |
| 2 |
£¨2£©t=
| T |
| 2 |
| L |
| 2 |
£¨3£©t=Tʱ¿Ì½øÈëµÄÁ£×ÓÖ»ÊÜÂåÂ××ÈÁ¦×÷Óã¬ÔòµÃ
x=v0?
| T |
| 2 |
µÃ
| L |
| v0 |
| T |
| 2 |
ÓÉy=
| 1 |
| 2 |
| E0q |
| m |
| T |
| 2 |
| L |
| 2 |
| m |
| E0q |
| T2 |
| 4L |
ÓÖÓÉqv0B=m
| ||
| R |
| mv0 |
| qB |
Á£×ÓÔڴų¡ÖÐÔ˶¯µÄÖÜÆÚΪ T0=
| 2¦Ðm |
| qB |
Éè¾¹ý
| T |
| 2 |
| 3T |
| 2 |
| ¦È |
| 2¦Ð |
| ||
| ¦ÐT |
ÒÔºóÁ£×Ó²»ÊÜÁ¦×öÔÈËÙÖ±ÏßÔ˶¯µÄ´òµ½Qµã£¬ÓÉQOµã¼äµÄ¾àÀëΪ
yQO=£¨L-Lcos¦È£©+£¨L-Lsin¦È£©tan¦È=£¨L-Lcos1£©+£©+£¨L-Lsin1£©tan1£»
£¨4£©t=
| 3T |
| 2 |
£¨5£©ÒÔºóÖØ¸´£¬¼´£ºt=2kT£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½ÐéÏßλÖõÄÁ£×Ó£¬ÔÚt=£¨2k+
| 1 |
| 2 |
t=£¨2k+
| 1 |
| 2 |
t=£¨2k+1£©T£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½ÐéÏßλÖõÄÁ£×Ó£¬ÔÚt=£¨2k+1£©T+
| T |
| 2 |
| L-sin1 |
| v0cos1 |
t=£¨2k+
| 3 |
| 2 |
´ð£º
t=2kT£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½ÐéÏßλÖõÄÁ£×Ó£¬ÔÚt=£¨2k+
| 1 |
| 2 |
t=£¨2k+
| 1 |
| 2 |
t=£¨2k+1£©T£¨k=0£¬1£¬2£¬3£¬¡£©Ê±¿Ìµ½ÐéÏßλÖõÄÁ£×Ó£¬ÔÚt=£¨2k+1£©T+
| T |
| 2 |
| L-sin1 |
| v0cos1 |
t=£¨2k+
| 3 |
| 2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿