题目内容
如图所示,在游乐节目中,要求选手从高为
H的平台上A点由静止出发,沿着动摩擦因数为μ的滑道向下运动到B点后水平滑出,最后刚好落到水池中的浮台上.设滑道可以伸缩,其水平距离为L,B点的高度h可由选手自由调节(取g=10 m/s2).要求:![]()
(
1)选手到达B点的速度表达式;(
2)试证明选手落到浮台上的速度大小与B点的高度h无关;(
3)同学甲认为B点的高度h越大,选手在空中飞越的时间越长,在浮台上的落点距岸边C越远;同学乙认为B点的高度h越小,选手到达B点的水平速度越大,在浮台上的落点距岸边C越远,请通过推算说明你的观点.
答案:
解析:
解析:
|
(1)由A运动到B过程,设滑道倾角为 则由牛顿定律得: 又: 且: 解得: (2)平抛运动过程: 竖直方向: 水平方向: 选手落到浮台上的速度大小: 与h无关.(1分) (3)设选手在浮台上的落点距岸边C的距离为S, 对平抛运动过程: 得: 当: 且: 因此,两人的看法均不正确. 当 当 |
练习册系列答案
相关题目