题目内容

如图所示,一个质量为m=3kg的均质小球放在倾角为θ=37°的光滑斜面上,并被斜面上一个竖直的光滑挡板挡住,处于静止状态,试分别求出小球对挡板和对斜面的压力.(已知g=10m/s2,sin37°=0.6,cos37°=0.8)
分析:小球对挡板和对斜面的压力不好求,我们可以求挡板和斜面对小球的支持力,利用牛顿第三定律求解这两个力,小球静止,对小球受力分析后应用平衡条件列式求解.
解答:解:取小球为研究对象进行受力分析如图所示:

由于小球处于静止状态,其中F和G的合力N'与N大小相等,方向相反,即N'=N
所以:
F
G
=tan37°
,解得:F=
3
4
×3×10=22.5N

G
N
=cos37°
,解得:N=
30
0.8
=37.5N

由牛顿第三定律得:
小球对斜面的压力FN=N=37.5N,方向垂直于斜面向下
小球对挡板的压力F'=F=22.5N,方向垂直于挡板指向挡板
答:小球对斜面的压力为37.5N,方向垂直于斜面向下
小球对挡板的压力为22.5N,方向垂直于挡板指向挡板
点评:不好求解的力可用牛顿第三定律进行转换,如本题转换成对小球的力后,对小球进行受力分析,运用力的合成或分解结合共点力平衡条件解决问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网