题目内容

为了缩短下楼的时间,消防队员往往抱着竖直杆从楼上直接滑下,先以尽可能大的加速度沿杆做匀加速直线运动,再以尽可能大的加速度沿杆做匀减速直线运动。假设一名质量为m=65kg训练有素的消防队员(可视为质点),在沿竖直杆无初速下滑至地面的过程中,重心共下移了s=11.4m,已知该队员与杆之间的最大滑动摩擦力可达f=975N,队员着地时的速度不能超过V1=6m/s,重力加速度为10m/s2,,忽略空气对队员的作用力。求

(1)该队员下落过程中的最大速度。

(2)该队员下落过程中的最短时间。

 

【答案】

(1)设队员下滑的最大速度为V,做匀减速运动的加速为a,运动中匀加速和匀减速运动的时间分别为t1和t2,下滑的距离分别为h1和h2

队员先做自由落体运动

V2=2gh…………        ….(1)…………………………………1分

当速度达到v后开始做匀减速直线运动

V2-v12=2ah………………….(2)…………………………………. 1分

由牛顿第二定律

f-mg=ma    a=5m/s…………..(3)………………………………. 2分

又 s=h1+h2…………………….(4).................................................. 1分

由(1)(2)(3)(4)式解得

V=10m/s……………………………………………………………. 2分

(2)队员下滑过程中有.

V=gt1       t1=1s........................(5)………………………………1分

V=V1+at2    t2=0.8s......  ...........(6)………………………………. 1分

运动过程中最短时间t

t=t1+t2......................(7)....................................................................... 1分

由(5)(6)(7)得

t=1.8......................................................................................................2分

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网