题目内容
如图所示,半径为R、圆心为O的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上,一根轻质长绳穿过两个小圆环,它的两端都系上质量为m的重物,忽略小圆环的大小.
(1)将两个小圆环固定在大圆环竖直对称轴的两侧
=30°的位置上(如图),在两个小圆环间绳子的中点C处,挂上一个质量M=
m的重物,使两个小圆环间的绳子水平,然后无初速释放重物M,设绳子与大、小圆环间的摩擦均可忽略,求重物M下降的最大距离.
(2)若不挂重物M,小圆环可以在大圆环上自由移动,且绳子与大、小圆环间及大、小圆环之间的摩擦均可以忽略,问两个小圆环分别在哪些位置时,系统可处于平衡状态?
答案:
解析:
解析:
|
(1)重物先向下做加速运动,后做减速运动,当重物速度为零时,下降的距离最大,设下降的最大距离为h, 由机械能守恒定律得 (2)系统处于平衡状态时,两小环的可能位置为 a.两小环同时位于大圆环的底端 b.两小环同时位于大圆环的顶端 c.两小环一个位于大圆环的顶端,另一个位于大圆环的底端 d.除上述三种情况外,根据对称性可知,系统如能平衡,则小圆环的位置一定关于大圆环竖直对称轴对称.设平衡时,两小圆环在大圆环竖直对称轴两侧
对于重物m,受绳的拉力T与重力mg作用,有T=mg.对于小圆环,受到三个力的作用,水平绳的拉力T,竖直绳的拉力T,大圆环的支持力N.两绳的拉力沿大圆环切向的分力大小相等,方向相反 得 |
练习册系列答案
相关题目