(本题满分10分)甲、乙两队参加环保知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人答题正确与否相互之间没有影响.用表示甲队的总得分.(Ⅰ)求随机变量的分布列和数学期望; (Ⅱ)用表示“甲、乙两个队总得分之和等于3”这一事件,用表示“甲队总得分大于乙队总得分”这一事件,求.
(本题满分8分)从装有6个红球、4个白球的袋中随机取出3个球,设其中有个红球,求随机变量的分布列.
甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。(Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率。
(本小题满分12分) 某商场准备在五一劳动节期间举行促销活动,根据市场调查,该商场决定从2种服装商品、3种家电商品、5种日用商品中,选出3种商品进行促销活动。(I)试求选出的3种商品中至少有一种是日用商品的概率;(II)商场对选出的A商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高120元,同时允许顾客有3 次抽奖的机会,若中奖,则每次中奖都可获得60元奖金,假设顾客每次抽奖时获奖与否是等可能的。试求某位顾客所中奖金数不低于商场提价数的概率。
某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中:(1)两种大树各成活1株的概率;(2)成活的株数的分布列与期望.
某校欲从两个素质拓展小组中选拔4个同学参加市教育局组织的2010年夏令营活动,已知甲组内有实力相当的1个女生和3个男生,乙组内有实力相当的2个女生和4个男生,现从甲、乙两个小组内各任选2个同学.(1)求选出的4个同学中恰有1个女生的概率;(2)设X为选出的4个同学中女生的个数,求X的分布列和数学期望.
(本题满分12分)为研究气候的变化趋势,某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度,如下表:(1)若第六、七、八组的频数、、为递减的等差数列,且第一组与第八组的频数相同,求出、、、的值;(2)若从第一组和第八组的所有星期中随机抽取两个星期,分别记它们的平均温度为,,求事件“”的概率.
(本题满分13分)某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:
(14分)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和组成数对(,并构成函数(Ⅰ)写出所有可能的数对(,并计算,且的概率;(Ⅱ)求函数在区间[上是增函数的概率.
(12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧作,两次烧制过程相互独立,根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75。(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望。