((本小题满分14分)数列是以为首项,为公比的等比数列.令,,.(1)试用、表示和;(2)若,且,试比较与的大小;(3)是否存在实数对,其中,使成等比数列.若存在,求出实数对和;若不存在,请说明理由.
已知等比数列中,,求其第4项及前5项和.
(本小题满分14分)已知数列的首项,,….(Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前项和.
(12分)已知数列{an},{bn}是各项均为正数的等比数列,设cn=(n∈N*).(1)数列{cn}是否为等比数列?证明你的结论;(2)设数列|ln an|,|1n bn|的前n项和分别为Sn,Tn. 若a1="2," . 求数列{cn}的前n项和.
(本小题满分14分)设是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线相切,对每一个正整数,圆都与圆相互外切,以表示的半径,已知为递增数列.(1)证明:为等比数列;(2)设,求数列的前项和.
在等比数列{}中,,公比,且, 与的等比中项为2.(1)求数列{}的通项公式;(2)设,数列{}的前项和为,当最大时,求的值。
在等比数列{}中,,公比,且, 与的等比中项为2.(1)求数列{}的通项公式;(2)设,数列{}的前项和为,当最大时,求的值.
(本小题满分12分)设为数列{}的前n项和,=kn2+n,n∈N*,其中k是常数.(1)求及;(2)若对于任意的m∈N*,,,成等比数列,求k的值.
(本小题满分12分)已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项。(1)求数列{an}的通项公式;(2)若bn=,sn=b1+b2+┉+bn,对任意正整数n,sn+(n+m)an+1<0恒成立,试求m的取值范围。
(本小题满分12分)已知{an}是各项均为正数的等比例数列,且(Ⅰ)求{an}的通项公式; (Ⅱ)设,求数列{bn}的前N项和Tn。