(本小题满分12分)设向量,点为动点,已知。(1)求点的轨迹方程;(2)设点的轨迹与轴负半轴交于点,过点的直线交点的轨迹于、两点,试推断的面积是否存在最大值?若存在,求其最大值;若不存在,请说明理由。
(本小题满分12分)在,角A,B,C的对边分别为。(1)判断的形状;(2)若的值。
(本小题满分14分)已知向量, 向量, 且, 动点的轨迹为E.(1)求轨迹E的方程; (2)证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B, 且(O为坐标原点),并求出该圆的方程;
(本小题满分12分)(I)求向量;(II)若映射①求映射f下(1,2)原象;②若将(x、y)作点的坐标,问是否存在直线l使得直线l上任一点在映射f的作用下,仍在直线上,若存在求出l的方程,若不存在说明理由
(本小题14分)在平面直角坐标系中,O为坐标原点,已知向量,又有点(1)若,且,求向量;(2)若向量与向量共线。当,且函数取最大值为4,求的值。
已知向量=(3,-4)=(6,-3)=(5-m, -3-m)(1)若点A、B、C不能构成三角形,求实数m应满足的条件;(2)若△ABC为直角三角形,求实数m的值。
四边形中, (1)若,试求与满足的关系式;(2)满足(1)的同时又有,求的值及四边形的面积。
(本题满分10分)在中,点E是AB的中点,点F在BD上,且BF=BD,求证:E、F、C三点共线.
在平行四边形ABCD中,已知,AE与DB交于F点。设,用a表示、的值。
(本小题满分13分) 已知⊙O经过三点(1,3)、(-3,-1)、(-1,3),⊙M是以两点(7,),(9,)为直径的圆.过⊙M上任一点P作⊙O的切线PA、PB,切点为A、B.(1)求⊙O及⊙M的方程;(2)若直线PA与⊙M的另一交点为Q,当弦PQ最长时,求直线PA的方程;(3)求的最大值与最小值.