【题目】已知i为虚数单位,a为实数,复数z=(1﹣2i)(a+i)在复平面内对应的点为M,则“”是“点M在第四象限”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
【题目】如图,双曲线的两顶点为,,虚轴两端点为,,两焦点为,,若以为直径的圆内切于菱形,切点分别为,,,.则
(1)双曲线的离心率______;
(2)菱形的面积与矩形的面积的比值______.
【题目】已知函数的定义域为,且的图像连续不间断,若函数满足:对于给定的实数且,存在,使得,则称具有性质.
(1)已知函数,判断是否具有性质,并说明理由;
(2)求证:任取,函数,具有性质;
(3)已知函数,,若具有性质,求的取值范围.
【题目】已知焦点在轴上的椭圆上的点到两个焦点的距离和为10,椭圆经过点.
(1)求椭圆的标准方程;
(2)过椭圆的右焦点作与轴垂直的直线,直线上存在、两点满足,求△面积的最小值;
(3)若与轴不垂直的直线交椭圆于、两点,交轴于定点,线段的垂直平分线交轴于点,且为定值,求点的坐标.
【题目】某企业生产的产品具有60个月的时效性,在时效期内,企业投入50万元经销该产品,为了获得更多的利润,企业将每月获得利润的10%再投入到次月的经营中,市场调研表明,该企业在经销这个产品的第个月的利润是(单位:万元),记第个月的当月利润率为,例.
(1)求第个月的当月利润率;
(2)求该企业在经销此产品期间,哪一个月的当月利润率最大,并求出该月的当月利润率.
【题目】设整数数列{an}共有2n()项,满足,,且().
(1)当时,写出满足条件的数列的个数;
(2)当时,求满足条件的数列的个数.
【题目】某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答).
【题目】某学校将甲、乙等6名新招聘的老师分配到4个不同的年级,每个年级至少分配1名教师,且甲、乙两名老师必须分到同一个年级,则不同的分法种数为______
【题目】工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺丝,第一阶段,首先随意拧一个螺丝,接着拧它对角线上(距离它最远的,下同)螺丝,再随意拧第三个螺丝,第四个也拧它对角线上螺丝,第五个和第六个以此类推,但每个螺丝都不要拧死;第二阶段,将每个螺丝拧死,但不能连续拧相邻的2个螺丝.则不同的固定方式有________.
【题目】记是定义在上且满足如下条件的函数组成的集合:
①对任意的,都有;
②存在常数,使得对任意的、,都有.
(1)设函数,,判断函数是否属于?并说明理由;
(2)已知函数,求证:方程的解至多一个;
(3)设函数,,且,试求实数的取值范围.