【题目】即将于
年夏季毕业的某大学生准备到贵州非私营单位求职,为了了解工资待遇情况,他在贵州省统计局的官网上,查询到
年到
年非私营单位在岗职工的年平均工资近似值(单位:万元),如下表:
年份 |
|
|
|
|
|
|
|
|
|
|
序号 |
|
|
|
|
|
|
|
|
|
|
年平均工资 |
|
|
|
|
|
|
|
|
|
|
(1)请根据上表的数据,利用线性回归模型拟合思想,求
关于
的线性回归方程
(
,
的计算结果根据四舍五入精确到小数点后第二位);
(2)如果毕业生对年平均工资的期望值为8.5万元,请利用(1)的结论,预测
年的非私营单位在岗职工的年平均工资(单位:万元。计算结果根据四舍五入精确到小数点后第二位),并判断
年平均工资能否达到他的期望.
参考数据:
,
,![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
附:对于一组具有线性相关的数据:
,
,
,
,
其回归直线
的斜率和截距的最小二乘法估计分别为
,![]()
【题目】某家庭记录了未使用节水龙头
天的日用水量数据(单位:
)和使用了节水龙头
天的日用水量数据,得到频数分布表如下:
未使用节水龙头
天的日用水量频数分布表
日用水量 |
|
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
|
使用了节水龙头
天的日用水量频数分布表
日用水量 |
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
(Ⅰ)作出使用了节水龙头
天的日用水量数据的频率分布直方图;
(Ⅱ)估计该家庭使用节水龙头后,一年能节省多少水?(一年按
天计算,同一组中的数据以这组数据所在区间中点的值作代表)
【题目】某市交管部门为了宣传新交规举办交通知识问答活动,随机对该市15~65岁的人群抽样,回答问题统计结果如图表所示.
![]()
组别 | 分组 | 回答正确的人数 | 回答正确的人数占本组的概率 |
第1组 | [15,25) | 5 | 0.5 |
第2组 | [25,35) |
| 0.9 |
第3组 | [35,45) | 27 |
|
第4组 | [45,55) |
| 0.36 |
第5组 | [55,65) | 3 |
|
(1)分别求出
的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.