【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)
分数 | |||||||
甲班频数 | |||||||
乙班频数 |
(Ⅰ)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取人进行考核,记“成绩不优秀”的乙班人数为,求的分布列和期望.
参考公式:,其中.
临界值表
【题目】设是一个由和构成的行列的数表,且中所有数字之和不小于,所有这样的数表构成的集合记为,记为的第行各数之和,为的第列各数之和,为、、,、、、、中的最大值.
(1)对如下数表,求的值;
(2)设数表,求的最小值;
(3)已知为正整数,对于所有的,,且的任意两行中最多有列各数之和为,求的值.